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INTRODUCTION

Analysis is the branch of mathematics that deals with
inequalities and limits. The present course deals with the most basic
concepts in analysis. The goal of the course is to acquaint the reader
with rigorous proofs in analysis and also to set a firm foundation for

calculus of one variable.

Calculus has prepared you, the student, for using
mathematics without telling you why what you learned is true. To
use, or teach, mathematics effectively, you cannot simply know what
is true, you must know why it is true. This course shows you why
calculus is true. It is here to give you a good understanding of the
concept of a limit, the derivative, and the integral. Let us use an

analogy.

We start with a discussion of the real number system, most
importantly its completeness property, which is the basis for all that
comes after. We then discuss the simplest form of a limit, the limit of
a sequence. Afterwards, we study functions of one variable,
continuity, and the derivative. Next, we define the Riemann integral
and prove the fundamental theorem of calculus. We discuss
sequences of functions and the interchange of limits. Finally, we give

an introduction to metric spaces.

The term real analysis is a little bit of a misnomer. I prefer to
use simply analysis. The other type of analysis, complex analysis,
really builds up on the present material, rather than being distinct.
Furthermore, a more advanced course on real analysis would talk
about complex numbers often. I suspect the nomenclature is

historical baggage.
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BLOCK- 1
SETS, FUNCTIONS AND METRIC SPACES

UNIT-I  SETS AND FUNCTION

Structure

1.0 Introduction
1.1 Objective
1.2 Sets and Function
1.2.1 Intervals in R
1.3 Countable Sets
1.4 Uncountable Sets
1.5 Inequalities of Holder and Minkowski
1.6 Answers to Check Your Progress Questions
1.7 Summary
1.8 Keywords

1.9 Self Assessment Questions and Exercises

1.10 Further Readings

1.0 INTRODUCTION

In this chapter we introduce concepts which we need in the
sequel.

1.1 OBJECTIVE

After going through this unit, you will be able to:

¢ Understand what is meant by sets and functions.
e Discuss intervalsin R.
e Describe countable and uncountable sets.

1.2 SETS AND FUNCTIONS

The concepts of sets and functions are indispensable to
almost all branches of pure mathematics. The usual material of
elementary set theory is so current that we take it for granted. We
freely use the following notations of set theory.
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(i) Ais asubset of B writtenas A € B.
(ii) Union of two sets A and B written as A U B.

(iii) Intersection of two sets A and B writtenas A N B.

(iv) Complement of subset of A of X written as A°.

(v) Difference of two sets A and B written as A — B.

(vi) Cartesian product of two sets A and B written as A X B.

(vii) A function f aset A toaset B writtenas f: 4 > B.

(viii) The empty set which contains no elements is denoted
by .

Certain letters are reserved to denote particular sets which

occur often in our discussion. They are

N, the set of all natural numbers.

Z, the set of all integers.

Q, the set of all rational numbers.

Q™, the set of all positive rational numbers.

R, the set of all real numbers.

R™, the set of all ordered n-tuples (x4, x5, ..., x,,) of real
numbers.

C, the set of all complex numbers.

C™, the set of all ordered n-tuples (x4, x5, ..., X,,) of complex
numbers.

The concept of union and intersection can be extended to any
collection of sets. Let I be a nonempty set. For each i€ I, let A; be a set.
Then we say that {A;: ie I} is a family of sets indexed by the set I.

We define U;.; A; = {x: xe A;for atleast one ie I} and

Nic1 A; = {x:xe A;for all ie I}.

Example 1. For each ieN. Let A; ={i,i +1,...,i +n,..}. Therefore,
A =1{12,..};A, ={2,3,..}; ... Then {A;:ie N} is a family of sets
indexed by N. Here U;cn4; = {1,2, ...,n, ...} = Nand Ny 4; = .
Note 1. U;y 4; is also written as Ujgy 4; and Nyey 4; as Nigy Ai-
Note 2. The distributive laws for union and intersection and De
Morgan’s laws for finite number of sets can be generalized to any
collection of sets as follows.

(D) (Uien4)€ = Nien A5

(i) (Nien A€ = Ugen 45 -

(iii) AN (Uien Bi) = Uien(A N By).
(iv) AU (Nien B) = Nien(4 U B)).
1.2.1 INTERVALS IN R

Leta, be Rand a < b. Then

() (a,b) = {x/xe Rand a < x < b} is a called the open
interval with a and b as end points.



(i) [a,b] ={x/xe Rand a < x < b} is a called the closed
interval with a and b as end points.

(iii) (a,b] ={x/xe Rand a < x < b} is a called the open-
closed interval with a and b as end points.

(iv) [a,b) ={x/xe Rand a < x < b} is a called the closed-
open interval with a and b as end points.

(v) [a,0) ={x/xe Rand x > a}.

(vi) (a,) ={x/xe Rand x > a}.

(vii) (—o,a] ={x/xe Rand x < a}.

(viii) (—o0,a) = {x/xe Rand x < a}.

(ix) (-oo,00) =R,

Any subset of R which is one of the above forms is called an
interval. Any interval of the form (i),(ii),(iii) or (iv) is called a finite
interval or bounded interval and any interval of the form (v), (vi),
(vii), (viii) or (ix) is called an infinite interval or an unbounded
interval.

The singleton set {a} is considered to be a degenerated closed
interval [a, a].

1.3 COUNTABLE SETS

In this section we introduce the notation of countability and
uncountability of a set. If a set A is finite then we can actually count
the number of elements in this set. In other words we can label the
elements of A by using the natural number 1,2, ...,n for some n and
the number of elements in this set A in n.

In this case there exists a bijection from A to B are two

finite sets having the same number of elements, then there exists a
bijection from A to B.
Definition. Two sets 4 and B are said to be equivalent if there exists a
bijection f from A to B.
Note. From what we have seen above, two finite sets A and Bare
equivalent iff they have the same number of elements. Hence a finite
set cannot be equivalent to a proper subset of itself. However, the
infinite set can be equivalent to a proper subset as seen in the
following examples.
Example 1. Let A = N and B = {2,4,6, ...,2n, ... }.

Then f: A — B defined by f(n) = 2n is a bijection. Hence A
is equivalent to B even though A has actually ‘more’ elements than B.
Definition. A set A is set to be countably infinite if 4 is equivalent to
the set of natural numbers N.

A is said to be countable if it is finite or countably infinite.
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Note. Let A be a countably infinite set. Then there is a bijection f from
Nto A. Let f(1) = a4, f(2) = ay, ..., f(n) = a, ... Then

A={ay,a,, .., a, ..}
Thus all the elements of A can be labeled by using the elements of N.

Example 1. {2,4,6, ...,2n, ... } is a countable set.
Example 2. Z is countable (refer example 2).
Theorem 1. A subset of a countable set is countable.
Proof. Let A be a countable set and let B € A.

If A or B is finite, then obviously B is countable.
Hence let A and B be both infinite.

Since A is countably infinite, we can write A =
{a;,ay, ..., ay, .. }. Let a,, be the first element in A such that
an, € B. Let a,,, be the second element in A which follows a,,,
such that a, € B.

Proceeding like this we get A = {anl ) py s e } Thus all

the elements of B can be labelled by using the elements of N.
Hence B is countable.

Theorem 2. Q* is countable.

Proof. Take all positive rational numbers whose numerator
and denominator add up to 2. We have only one number

1
namely T

Next we take all positive rational numbers whose numerator
and denominator add up to 3. We have % and %

Next we take all positive rational numbers whose numerator
and denominator add up to 4. We have %, % and %

Proceeding like this, we can list all the positive rational
numbers together from the beginning omitting those which are

already listed.

Thus we obtain the set {1,;1,2, 3%, %,%,%,4,...}. This set

contains every positive rational number each occurring exactly once.
Thus Q% is countable.

Theorem 3. Q is countable.
Proof. We know that Q is countable. Let Q* = {ry, 7, ..., 73, ... }.

Therefore, Q = {0, 1y, £15, ..., 15, ... }.



Let f:N—>Q be defined by f(1)=0,f(2n)=rm€ and
f@Cn+1) =—n,

Clearly, fis a bijection and hence Q is countable.

Theorem 4. N X N is countable.
Proof. N X N = {(a, b)|a, b € N}.

Take all ordered pairs (a, b) such thata + b = 2.
There is only one such pair namely (1,1).

Next take all ordered pairs (a, b) such thata + b = 3.
We have (1,2) and (2,1).
Next take all ordered pair (a, b) such thata + b = 4.
We have (3,1), (2,2) and (1,3).

Proceeding like this and listing all the ordered pairs together
from the beginning, we get the set
{(1,1),(1,2),(2,1),(3,1),(2,2),(1,3),...}. This set contains every
ordered pair belonging to N X N exactly once.

Thus N X N is countable.

Theorem 5. If 4 and B are countable sets then A X B is also countable.
Proof. We assume that 4 and B are countably infinite.

LetA ={a,,a,,...,a,, ...};B={by, by, ..., b,, ... }.
Now define f:N X N —» A x B by f(i,j) = (a;, b;).
We claim that f is a bijection.
Supposex = (p,q) € NxNandy = (u,v) € NxN.
Now,
f(x) = f(y) = (ap'bq) = (ay, by)
= a, = by, aq, = b,
= p=vandq =v
=x =Y.
~ fis1-1.
Now, suppose (a,,, a,) € A X B.
Then (m,n) € Nx Nand f(m,n) = (a,, a,)-
Therefore, f is onto. Hence f is a bijection.
Hence A X B is equivalent to N X N which
is countable. (refer Theorem 4)
Hence A X B is countable.
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Theorem 6. Let A be a countably infinite set and f be a mapping of A
onto a set B. Then B is countable.

Proof. Let A be a countably infinite set and f: A — B be an onto map.

Let b € B. Since f is onto, there exist at least one pre-image
for b. Choose one element a € A such that f(a) = b.

Now, define g: B —» Aby g(b) = a.
Clearly, gis 1 — 1.
Therefore, B is equivalent to a subset of the countable set A.

Therefore, B is countable. (by theorem 1)
Theorem 7. Countable union of countable sets is countable.
Proof. Let S = {4,,4,, ..., 4,, ...} be a countable family of countable
sets.
Case (i) Let each 4; be countably infinite.
Let Ay ={a;1,a49, ., 019y o }

AZ = {a21, a22, ey aZn, }

A, ={a1, Q1py oor Ay 0 }

Now we defineamap f:N x N —» U 4, by f(i,/) = a;;.
Clearly f is onto.
Also by theorem 4, N X N is countably infinite.
Hence by theorem 6, U 4,, is countably infinite.
Case (ii) Let each A; be countable.

For each i choose a set B; such that B; is a countably
infinite setand A; € B;.

NOW, U Al' c U Bl"
Now, U B; is countable (by case (i)).

Therefore, U 4; is countable. (theorem 1).



Problem 1. Any countable infinite set is equivalent to a proper subset
of itself.
Solution. Let 4 be a countably infinite set.

Hence A = {aq, a,, ..., a,, ... }.

Let B = {a,,as, ..., ap, ... }

Clearly B is a proper subset of A.
Defineamap f: A - B by f(a,) = ap4q.

Clearly f is a bijection. Hence A is equivalent to B.
Problem 2. Any infinite set contains a countably infinite subset.
Solution. Let A be an infinite set.
Choose any element a, € A.
Now, since A is infinite set, we can choose another element,
a, € A—{a,}.

Now, suppose we have chosen a4, a,, ..., a, from A.
Since A is infinite, A — {a4, a,, ..., a,,} is also infinite.
.~ We can choose a,,,; from A — {a,y,a,, ..., a,}.

Now, B = {a4, as, ..., @y, Gy41, - } is countably infinite subset of A.

Problem 3. Any infinite set is equivalent to a proper subset of itself.
Solution. Let A be an infinite set.

By problem 2 above, A contains a countably infinite
subset B ={a,,as,..,a,, ... }.

Clearly A = (A —B) U{a,,as,...,a,, ..} = A—{a;}.

Clearly C is a proper subset of A.

Consider the function f: A - C defined by f(x) = x if
x €A —Bandf(a,) = apsq-

Obviously f is a bijection. Hence A is equivalent to C.

14 UNCOUNTABLE SETS

Definition. A set which is not countable is called uncountable.  All
the infinite sets we have considered in the previous section are
countable.We shall now give an example of an uncountable set.

Theorem 8. (0,1] is uncountable.

Proof. Every real number in (0,1] can be written uniquely as a non-
terminating decimal 0.a,a, ...a, .. where 0 <a; <9 for each i
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subject to the following restriction that any terminating decimal
.40 ...a, 000 ...is written as .a;a; ... (a, — 1)999 ...

For example .54 = .53999 ...
1= .999..
Suppose (0,1] is countable.

Then the elements of (0,1] can be listed as
{x1, x5, ... Xy, ... } Wwhere

xl :.a11a12 ...aln

Xy =.021027 ... a2n

xn =. alnaln ann

Now, for each positive integer n choose an interger b,

such that 0 < b, < 9and b,, # 0 and b,, # ayy.
Let y =.b,byb5 ...
Clearly y € (0,1].
Also y is different from each x; at least in the i th place.
Hence y # x; for each i which is a contradiction.
Hence (0,1] is uncountable.

Corollary 1. Any subset A of R which contains (0,1] is uncountable.

Proof. Suppose A is uncountable.

Therefore, by theorem 1 any subset of A is countable.
Hence we get (0,1] is countable which is a contradiction.Therefore, A

is uncountable.



Corollary 2. The set S of irrational numbers is uncountable.
Proof. Suppose S is countable.
We know Q@ is countable.

Therefore, SUQ =R is countable which is a
contradiction. (by corollary 1). Therefore, S is uncountable.

1.5 INEQUALITIES OF HOLDER AND
MINKOWSKI

Theorem 9 (Holder’s Inequality). If p > 1 and q is such that % + g =1

then

1/q

n n 1/ n
D e < [2 @ |p] p [Z b |QI
i=1 i=1 i=1

where a4, a,, ..., a, and by, b,, ... b, are real numbers.

Proof. First we prove the inequality
xl/Pyl/q < g + %,where x=>0andy = 0.

Now, let x,y > 0. Consider f(t) = t* — At + A — 1 where

A=2andt>0.
14

Then f'(t) = At*"1 —21=A@t*1-1).
Sf() =1 (1) =0.
Also f'(t) >0for0 <t <landf'(t) <Ofort>1.

~ f(t) < 0forallt = 0 and in particular f G) <0.

.-.f(£)=(§)l+1—1so.

y

(i)l/” —%(i) +%— 1<0.

Multiplying by y we get xl/Py(l_l/P) — % - (1 - l) y<0.
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xl/Py(l_l/P) - % - % <0. (since 1 —é =

).

1
p
1 1 X

x/Py /qS;-i-%.

Now to prove Holder’s inequality, we apply the above

laj|? ) _|bjl®

inequality to the numbersszzyzllailp ; yj—m for each
j=12,..,n
We get
a;i||b;| X Y
- |1; | Jn y <4 H
(X la P1/P[E, by 9] /e P 4
forallj =1,2,..,n
Adding these n inequalities we get
n
Falail bl <) (242 )
1 1 -
(S lag PV /RIS, by ja] /e 2P 4

n (% Yiy_1lyn 1gn

1 1 .
=+ (since X}y % = £y = 1)

= 1.
Using this in (1) we get X1 la;|1b;| < [Xieq la; |P]1/p[ n b |q]1/¢I.'.
1 1
o laby] < [X%q lag [P]/P[3k, b 19] /a

Note. If we put p = 2 = q in Holder’s inequality we get the following

inequality which is known as Cauchy-Schwarz inequality.

n n 1/ n
> e < [Z o |2] 2 [Z b |2]
i=1 i=1 i=1

1/2



Theorem 10. (Minkowski’s Inequality)

If p=1, [Xhylas+biP17 < [SP|a; |P1 /P[5, |b; [P] /P, where

a,,a,, ..., a, and by, b,, ... b, are real numbers.

Proof. This inequality is trivial whenp = 1. Letp > 1.

Clearly,
n 1/p n 1/p
[Z|ai+bi|f’ < Z(|ai|+|bi|)p] )
i=1 i=1
Now, 11 (adl+1B)? = B3 (gl 1) (gl + i)
n n
= > ladlarl+BDP + bl Y (lad+lbiP!
i=1 i=1
n 1/p rn 1/q
< Z|ai|p] Z(|ai|+|bi|)<p-”q]
i=1 Li=1

- n Yorn Yq
|P , Nwp-Dq
+ le ] [Zl<|al|+|bl|) ]

Where % + é = 1. (using Holder’s inequality).
Now, since %+ % = 1.we havep + q = pq.

Hence (p — 1)q = p.

+ Dividing by [E7%, (|a;|+1b;)?] /4 we get

n 1_1/q n 1/19 n /p
[Z(|ai|+|bi|)P‘ < [z |+ |bl-|p]
i=1 i=1 i=1
n p n p n Yp
2| daid+ibr| < [ P+ |bi|P]
2 D B

From (1) and (2) we get the required inequality.
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CHECK YOUR PROGRESS

1. Show that N is equivalent to Z.
2. Prove that the set {%, g, Z, } is countable.
3. Show that R is uncountable.

1.6 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS
1. The function f: N — Z defined by
E if nis even
f(n) = 1—n
if nisodd

is bijection. Hence N is equivalent Z.

1 2 3

2.LetA = {5,5,2, } The function f: N — A defined by
f(n) = % is a bijection. Hence A is countable.

3. The results follows directly by taking A = R in theorem 8.

1.7 SUMMARY

1. Ais asubset of B written as A € B. Union of two sets A and B
written as A U B. Intersection of two sets A and B written as A N B.
Complement of subset of A of X written as A°. Difference of two sets
A and B written as A — B. Cartesian product of two sets A and B
written as A X B. A function f a set A to a set B written as f: A — B.
The empty set which contains no elements is denoted by ®.

2. Two sets A and B are said to be equivalent if there exists a
bijection f from A to B.
3. The concept of union and intersection can be extended to

any collection of sets.

4. Any subset of R which is one of the above forms is called
an interval.

5. Any interval of the form (a,b),[a,b], [a, b), (a,b] is
called a finite interval or bounded interval and any interval of the
form [a, ), (a, ), (—x,a], (—x,a), (—x, ) is called an infinite
interval or an unbounded interval.

6. The singleton set {a} is considered to be a degenerated
closed interval [a, a].

7. A set A is set to be countably infinite if A is equivalent to
the set of natural numbers N.

8. Ais said to be countable if it is finite or countably infinite.



9. A setwhich is not countable is called uncountable. All
the infinite sets we have considered in the previous section
are countableWe shall now give an example of an
uncountable set.

1.8 KEYWORDS

1. Interval: Any subset of R which is one of the above forms is
called an interval.

2. OpenInterval: (a,b) = {x/xe Rand a < x < b}.

3. Closed Interval: [a, b] = {x/xe Rand a < x < b}.

4. Open-Closed Interval: (a, b] = {x/xe Rand a < x < b}.

5. Closed-Open Interval: [a, b) = {x/xe Rand a < x < b}.

6. Finite interval or bounded interval: Any interval of the form
(a,b),[a, b],[a, b),(a,b] is called a finite interval or bounded
interval.

7. Infinite interval or an unbounded interval:Any interval of the
form [a, ), (a, ), (—x,a], (—,a), (—oo,0)is called an
infinite interval or an unbounded interval.

8. Countably Infinite : a set 4 is set to be countably infinite if 4 is
equivalent to the set of natural numbers N.

10. Countable: A is said to be countable if it is finite or countably
infinite.

11. Uncountable: A set which is not countable is called
uncountable.

12. Equivalent: Two sets A and B are said to be equivalent if there
exists a bijection f from A to B.

1.9 SELF ASSESSMENT QUESTIONS AND

EXERCISES

1. Let A={1,23,..,n,..} and B = {1,49,...,n%,..}. Show
that A and B are equivalent.

2. ShowthatNand A = {101,102,103, ...} are equivalent.

3. Show that for any two sets A and B, the set A X B is
equivalent to the set B X A.

4. Prove that the set of all even integers is countably infinite.

5. Prove that the set of all points (x,y) in the Euclidean
plane with rational coefficient is countable.

6. Prove that C is uncountable.

7. Prove that the set of all irrational numbers lying in the
interval (0,1] is uncountable.
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2.0 INTRODUCTION

The concept of convergence of sequences of real numbers
depends on the absolute value of the difference between any two
real numbers. We observe that this absolute is nothing but the
distance between the two numbers when they are considered as
points on the real lin. For the study of the concepts like continuity
and convergence the algebraic properties of R are irrelevant. This
situation necessitates the study of sets in which a reasonable
notation of distance is defined. A set equipped with a reasonable
concept of distance is called a metric space. In this chapter we
develop in a systematic manner the main facts about metric spaces.

2.1 OBJECTIVE

After going through this unit, you will be able to:

e Understand what is meant by metric spaces.
e Discuss limits in metric spaces.
e Describe continuous functions on metric spaces.
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2.2 METRIC SPACES

Definition. A metric space is a non-empty set M together with a
functiond:M X M - R

Satisfying the following conditions.
() d(x,y) =0forallx,yinM
(i) d(x,y) =0ifandonlyif x =y
(ii)d(x,y) = d(x,y) forall x,y in M
(iv)d(x,y) < d(x,z) +d(z,y) forallx,y and z in M.

d is called a metric or distance function and d(x, y) is called the
distance between x and y.

Note. The metric space M with metric d is denoted by (M, d) or simply
by M. In the previous definition (i) and (ii) are known as the non-
negative property, (iii) as the symmetry and (iv) as the triangle
inequality of the metric. we shall give below many examples of metric
spaces.

Example 1. The function d defined by d(x,y) = |x — y| is a metric for
the set R of real numbers. With this distance function, R is a metric
space denoted by (R, d). This metric d is called the usual metric for R.

Proof. (i) d(x,y) = |x — y| is a non-negative real number and
d(x,y) = 0iff [x — y| = 0. This implies and implied by x = y.

(i) dx,y) =lx—yl=|-(y—x)| =d(y,x).
(i)dx,y)=Ilx—yl=|x—z+z-y|<|x—z|+ |z -yl
Thatis d(x,y) < d(x,z) + d(z,).

Example 2. If x = (x1,x;),y = (v1,V,) are any two points in R?, we
can define three metrics d;, d, and d3 from R? x R? into R as follows:

dy (6, ) =/ (X1 — ¥1)? + (2 — ¥2)? (D
dy(x,y) = |x; — y1] + |x2 — ¥l (2)
ds;(x,y) = max {|x; — y1l, |22 — 21} (3)

We shall verify that (1), (2) and (3) satisfy all the requirements
of a metric.



Let x = (xq,x3),y = (y1,¥2) and z = (z,, z,) be any three
points of R2. For providing (1) to be a metric, we as follows:

(i) Since (x; — y;)? and (x, — y,)? are non-negative real numbers,
we see that (1) is non-negative. Hence, we see that d(x,y) > 0.

(ii) The x = y implies and is implied by x; = y; and x, = y, so that
d(x,y) = 0.Hence d(x,y) = 0 ifand only if x = y.

(iii) dx,y) = (1 =y + (x — ¥2)% =
V1 = %)%+ (y2 — %3)? = d(y, %)

Hence, we have d(x,y) = d(y, x).

(D) dx,y) = (1 —y)2+ (xp — y2)? =
\/(x1 —2z;+2z1 — 3’1)2 + (xy — 2,425 — yz)z

Ifa; = (xy —21),by = (21 —¥1),a; = (x, — z;) and
b, = (z, — y,),we have d(x,y) = \/(al + by)? + (a; + by)?.

By applying Minkowski’s inequality, we get

V(@ + b))%+ (a; + b2)2 < /(a2 + a,2) + ,/(bﬁ + by%).

Substituting for a4, a, , b; and b,, we get d(x,y) < d(x,z) +
d(z,y). Which proves the triangle inequality.

In the case of (2), we proceed as follows:

(i) Since |x; — y4| > 0 and |x, — y,| > 0, it follows that
d(x,y) =[xy —y1l + |xz —y2| > 0.

(ii) The x = y implies and is implied by (x4, x,) = (y1,Y2) so that
x; = y; and x, = y,. Hence |x; — y;| = 0. Hence |x, — y,| = 0.
From this, we get |x; — ;| + [x, — ¥2| = 0 which proves that
d,(x,y) = 0 ifand only if x = y.

(iii) dy(x,y) = |x1 = y1| + [x2 — yal
dy(x,y) = [y — x| + [y2 = x2| = dy (v, x).
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(V) dx,y) =lx—ynl+lx—yl=lx—z1+z =y + |x2 —
Zy+Z; — Yol

By using the property of the absolute value function,

d(x,y) < |x1 — z1| + |z — y1| + |%2 — Z2| + |22 — ¥
=% — z1| + |x2 — z5| + |21 — Y122 — y2
=d(x,z) +d(zy).

Hence, we have d(x,y) < d(x,z) + d(z,y).

To verify (3) to be a metric, first note that by max {|x; —
Y1), |x2 — ¥2|}, we mean the greater of the two numbers [x; — y,|

and |x, — y,| .
(i) Since |x; — y4| and |x, — y,| are non-negative numbers,
max {|x; — y1|, |xz — ¥,|}>0
so that d5(x,y) > 0.

(ii) x = y implies and is implied by x; = y; and x, = y, so that
|x; —y4] = 0and |x, — y,| = 0. From this, we get max {|x; —
Y1l 1x2 — .|} = 0ifand only if x = .

This proves that d;(x,y) = 0iff x = y.

(iii) d3(x, ¥) = max {|x; — y41/, %2 — ¥,|} = max{|y, —
X1, [y2 = x21} = d3(y, x).

(iv) To verify the triangle inequality,

ds(x,y) = max {|x; — y1l,1x; — y2|} = max {|x; —z; + z; —
Vil %2 — 23+2, — Yo}

Ifx, —2zy =a4, x, — 2, = ay,2, —y, = by,z, —y, = by, then
d(x,y) = max {|a; + by|, |ay+b,|}.

Since the argument is similar to the contrary case, let us
assume that |a,| < |a,|, |b;| < |b,| and also

max{|a; + by|, lay+b,|} = |ay+b,|.
Now, max {|a,|, |a;|} = |a,| and max {|b4], |b2|} = |b,|.

Hence, |a; + by| < |laq| + |b1] < |ay| + |b,|



So max{|a; + by|, |ay+b,|} = |ay|+|by| < max {|a,|,|a,|} +
max {|b,], |b,|}

Therefore, d;(x,y) < ds(x,z) + d;(z,y) which proves the
triangle inequality.

Example 3. On any non-empty set M we define d as follows

Oifx=y
1if x #y.

d(x,y) = {
Then d is a metric on M. This is called the discrete metric on M.
Proof. Clearly, d(x,y) = 0and d(x,y) © x = y.

Oifx=y
lif x +y.

Alsod(x,y) =d(y,x) = {
~d(x,y) =d(y,x) forallx,y € M.
Now letx,y,z € M.
Case () x =z
Then d(x,z) = 0.
Also, d(x,y) +d(y,z) = 0.
~d(x,z) <d(x,y) +d(y,z).
Case (ii) x # z
Then d(x,z) = 1.
Also, since x, z are distinct, y can not be equal to both x and z.
Hence eithery # x or y # z.
~dx,y)+dy,z) = 1.
~d(x,z) <d(x,y) +d(y, z).
Thus d(x,z) < d(x,y) + d(y,z) forall x,y,z € M.
Hence d is a metric M.

Example 4. In R™ we define

n 2
d(x,y) = [Z(xi - yi)ZI
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Where x = (x4, %3, ..., X,) and y = (¥4, V5, -, ¥n)- Then d is a metric on
R™. This is called the usual metric on R".

Proof. d(x,y) = [X™,(x; — v))%]/2 > 0.
d(x,y) = 0 &[S (x ~ y)*| 2 = 0.
oY (xi—y)*=0foralli=12,...,n.
o x; =y foralli=12..,n
S (X1, X2, 0 Xn) = V1, V20 s V) -
S x=y.
Also, d(x,y) = [Ziy (v = y)*] /2
= (B, — x)%] 2
= d(y, x).
To prove the triangle inequality, take

a; = x; —Y;; by = y; — z; and p = 2 in Minkowski’s inequality
we get,

n 1/2 n
[Z(xi —zp| < [z(xi -y’
i=1 i=1

ie,d(x,z) <d(x,y) +d(y,z).

Ya
+

n Y
Z()’i - Zi)z]

~ d is metric on R".
Note. R™ with usual metric is called the n-dimensional Euclidean space.
Example 5. Consider R™. Let p > 1. We define d(x,y) = XL, (x; —
p1/
yP] 7P

Where x = (x4, X3, ..., X)) and y = (¥4, 2, ..., ¥n)- Then d is a
metric on R",

The proof is similar to that of example 4.

Example 6. Consider R". Let p = 1. Let [, denote the set of all sequence
(x,) such that )7 |x|? is convergent. Define d(x,y) = [Xi=,(x; —

}’i)p]l/p

Where x = (x4, X3, ..., xp) and y = (¥4, Y2, «--» Yn)-
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Then d is a metric on [,
Proof. Leta, b € L,
First we prove d(a, b) is a real number.
By Minkowshi’s inequality we have
[y lag + bi|P1 70 < (S0 |aifP] 7P + [Ey bl ....(1)

Since a, b € 1, the right hand side of (1) has a finite limit as

1
s 252 la; + b;|P] /pis a convergent series.

1
Similarly we can prove that [};;2, |a; — b;|?] /p is also a
convergent series and hence d(a, b) is a real number.

Now, taking the limitasn — o in (1) we get

(S22 la; + bi[P1 7P < [S24 1@ |P1 7P + [Z24 by P 7P....(2)
Obviously d(x,y) = 0,

d(x,y) =0iffx = y.

And d(x,y) = d(y,x).

Now, letx,y,z € I, Taking, a; = x; — y;; b; = y; — z; in (2) we
get

1/p
+

o 1/p
Z()’i - Zi)p]
=1

© L/ ©
[Z(xi - zi>p] < [Z(xi - y)P
i=1 i=1

ie,d(x,z) <d(x,y) +d(y,z).
= d is metric on L,.

Example 7. Let M be the set of all sequence in R. Let x, y € M and let
x = (xp)andy = (yp).

Define

= |xn_yn|
d(x,y) = z
@Y= 2, 770+ o =D

n=1
Then d is a metric on M.

Proof. Let x, y € M. First we prove that d(x, y) is a real number > 0.
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Xn— 1
We have —n—ynl < —foralln.
2 (1+|xn—ynl) 2n

NOTES

1. .
Also, Y074 o= Is a convergent series.

1) [Xn—Ynl . . :
o _, ——————js a convergent series. (by comparison
D P TeRT—" & (by comp

test)
~ d(x,y) is areal number and d(x,y) = 0.

Now,

C |xn_yn|
dix,y) =0& Z =0
=1 2”(1 + |xn - ynD

S |x, — Y| = 0 forall n.
& x, =y, foralln.
oS x=y.

o 1Xn=ynl
Also, d(x,y) = Y1 2"(1+n|xnfyn|)

— 200 [yn—2xnl
n=1 2" (A+|yn—xnl)

=d(y, x).
Now, let x,y,z € M. Then

|Xn—2nl 1 1

<1- <1-
1+|xpn—2znl 1+|xp—2znl A+xn=ynl+|yn—2znl)

— [Xn=Ynl+|Yn—2znl
A+|xpn=ynl+lyn—2zal)

— |Xn=Ynl |Yn—2nl
(A+|xn=ynl+lyn—2znl) (A +|xn=ynl+yn—2znl)

[%n=Ynl |[Yn—2nl
— @+|xp—ynl) A+|yn—znl)

Multiplying both side of this inequality by zin and take the sum
fromn = 1to oo wegetd(x,z) < d(x,y) +d(y,z).

~ d is metric on M.

Example 8. Let d; and d, be two metrics on M. Define d(x,y) =
d,(x,y) + d,(x,y). Prove that d is a metric space on M.

Solution. d(x,y) = d,(x,y) + d,(x,y) = 0.
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d(x,y) =0 d;(x,y) +d,(x,y) =0.
o dy(x,y) =0and d,(x,y) = 0.
S x=y.
Now, d(x,y) = d,(x,y) + d,(x,y)
=d;(y,%) + da(y,x)
= d(y, x).
Let x,y,z € M. Then we have
di(x,z) < d;(x,y) +d;(y,z) and
dy(x,z) < dy(x,y) + d2(y, 2).
Adding, we get d(x,z) < d(x,y) + d(y, z).
~ d is a metric on M.

Example 9. Determine whether d(x, y) defined on Rby d(x,y) =
(x — y)? is a metric or not.

Solution. Let x,y € R.

d(x,y) = (x —y)? = 0.

d(x,y) = (x =) = (y —x)°
=d(y,x).

But triangle inequality does not hold.

Takex = -5,y = —4andz =4

Thend(x,y) = (-5+4)? =1

d(y,z) = (-4 —4)? = 64

d(x,z) = (4 +5)% = 81.

Here d(x,z) > d(x,y) + d(y, 2)

Hence triangle inequality does not hold.

~ d is not a metric on R.

2.3  LIMITS OF FUNCTIONS IN METRIC SPACES

For defining limits of functions in metric spaces, we need the
notation of cluster points in a set and so we explain it briefly.
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Definition. Let (M,d) be a metric space and E be a subset of M.
a € M is called a cluster point or a limit point of E if for every r > 0,
there exists a b € E distinct from a such thatd(a,b) < r.

That is, a is a cluster point of E, if there are points of E
distinct from a which are arbitrarily close to a. It must be noted that
the cluster point may or may not belong to the set.

Example 1. The set of cluster points of B = (0,1) in Ris [0,1].

No point outside (0,1) can be a cluster point of (0,1). 0 and 1
are cluster points of B. Since for every € > 0, we can find a point of
(0,1) in (0, ¢) distinct from 0. Similarly for the point 1 and other
points of (0,1). Hence, the set of cluster points of (0,1) in R is [0,1].

Example 2. The set of cluster points of (0,1) in R, is empty.

No point of R can be a cluster point of (0,1) in Rj. Suppose if
a is a cluster point of (0,1) in Rp, then for every € > 0, there should
exist a b distinct from a such that d(a, b) < € which is not possible
since d(a,b) = 1 when a # b in R. Hence, the set of all cluster points
of (0,1) in R} is empty.

We shall now introduce the concept of the limit of a function
in metric spaces.

Let (M;,d,) and (M,,d,) be metric spaces and let a € M;. Let
f be a function whose range is contained in M, and whose domain
contains all x € M; such that d,(a,x) <r for some r > 0 except
possibly at x = a. We also assume that a is a cluster point of the
domain of f. That is, we assume that for every r > 0, there is a point
b in the domain of f distinct from a such that d,(a, b) <.

Definition. f(x) is said to approach L where L € M, as x approaches
a, if given € > 0 there exists a § > 0 such that d,(f(x),L) < € when
0 < d;(x,a) < 8. We denote this by lim,_, f(x) =L or f(x) = L as
X - a.

The following theorem gives the algebraic properties of the
limits of real valued functions on metric spaces.

Theorem 1. Let (M, d) be a metric space and let a be a point in M. Let
f and g be real valued functions whose domains are subset of M and
ranges are in R with the usual absolute value metric. If
lim,_, f(x) =L and lim,_,, g(x) = N where L,N are in R, then we
have,

(D) limyq[f(x) + g(x)] =L + N.



(i) lim[f(x) —g()] =L —N.

(i) limyq[f(x).g(x)] = LN.
- : fG), _ L
(iv) llmx_,a[ﬁ =
Proof. Proof follows exactly on the same lines as the proof in
Theorem 4 of unit 7, when we replace the absolute value function in
the domain by the respective metric d. So we omit the details of the

proof.

2.4  CONTINUOUS FUNCTIONS ON METRIC
SPACES

As in the case of the generalization of the limits of sequences
and functions in metric spaces, we shall define continuous functions
in a metric space (M, d) by replacing the absolute value value in the
definition of continuity in R by the metric and creating the
analogues for an interval in R with the help of the metric.

A real valued function defined on R is said to be continuous at
x = a iflimy_, f(x) = f(a). Since the function is defined at x = a,
this definition is equivalent to the following e — § formulation.

The real valued function f is continuous at a € R if and only if
given &€ >0, there exists a § >0 such that |f(x) —f(a)| <e¢
whereever |x — a| < §.

Definition. Let (M, d) be a metric space. If a € M and r > 0, then an
open sphere of radius r about a denoted by B(a;r) is defined to be
the set of all points in M whose distance to a is less than r. That is
B(a;r) ={x € M:d(x,a) <r}. Since a € B(a:r),B(a:r)is non-
empty.

Example 1. The open sphere B(a;r) on the real line is the bounded
open interval (a — r, a + r) with mid point a and total length 2r and
B(0; 1) is the bounded open interval (—1,1).

Example 2. In Euclidean 3-space, B(0;1) is the set of all points
(x,y,z)such that x? + y2 + z2 < 1 which has motivated the above
terminology since x? + y? + z% < 1 is the inside of the sphere.

Example 3. Let M = Rj, the real line with the discrete metric. Let a
be any point in Rj. For 0 < r < 1, we have B(a;r) = a because the
only point in R, whose distance from a is less than 1 is a itself. But
B(a;r) = Ry forr > 1.

Since the open spheres in metric spaces are analogues of
open intervals on the real line, we shall give below the definition of
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convergent sequence and continuous function using the open spheres.

Definition. A sequence (x,) converges to a if and only if given € > 0,
there exists an, € N such that x,, € B(a; ¢) for all n = n,,.

Theorem 2. Let M; and M, be metric spaces with metrics d,; and d,
and let f be a mapping of M; into M,. Then f is continuous at a € M;
if and only if any one and hence all of the following three conditions
hold.

(i) Given & > 0, there exists a § > 0 such that d,(f(x), f(a)) < ¢
whenever d;(x,a) < 6.

(ii) The inverse image of f of any open sphere B(f(a); ) about
f(a) contains an open sphere B(a; §) about a.

(iii) Whenever (x,) is a sequence of points in M; converging
to a, then the sequence (f(x,)) of points in M, converges to f(a).

Proof. (i) is the reformulation of the definition of continuous function
using the metric d; and d, in M; and M, in the place of absolute value
function.

(ii) Let us assume that f is continuous. Then given € > 0, there
exists a § > 0 such that d,(f(x),f(a)) < &€ whenever d;(x,a) <.
From this we get f(x)€ B(f(a);e) which shows that x €
f~1(B(f(a); €)). Since we consider only the values of x which lie in
B(a;6), we get

B(a;8) c fYB(f(a);€)). . (1

Hence if f is continuous, the inverse image of any open sphere
B(f(a); €) about f(a) contains an open sphere B(a; §) about a.

Conversely if B(a;8) c f7'B(f(a);e),then we have
f(B(a;8)) € B(f(a);e). This implies that whenever x € B(a;9§),
f(x) € B(f(a); ¢). Thatis dz(f(x),f(a)) < &£ whenever d,(x,a) < 6.

(iii) Let f be a continuous at a and prove that if x, = a as
n — oo, then f(x,) = f(a) as n — o. Note that f(x,) will be defined
for large values of n. To prove the assertion, we have to show that
given ¢ > 0, there exists positive integer n, such that f(x) €
B(f(a); ¢) for all n = n,. Since f is continuous at a, given € > 0, there
exists a § > 0 such that f(x) € B(f(a);e) whenever x € B(a;?).

Hence, f(B(a;8)) € B(f(a);€). ...(2)

Since x,, = a asn — oo, there exists positive integer n, such
thatx € B(a;6) foralln > n,. ...(3)



Form (2) and (3), we see that

f(x) € B(f(a); ¢) for all n > n,. Hence, f(x,) = f(a) as

n — oo,

Conversely, x, = a implies f(x,) = f(a) as n—> o and
prove that f is continuous at x = a. Assume the contrary. Then by
(ii), the inverse image under f of B = B(f(a); €) contains no open

sphere about a. In particular f~!(B) does not contain B (a; %) for
any positive integer n. Hence, for each positive integer, there is a
point x,, € B (a; %) such that f(x) € B(f(a); ). Hence d;(x,, a) < %

but d,(f(x,), f(a)) > e. This contradicts the fact that f(x,) = f(x)
as n — oo, This contradiction proves the result.

Note 1. (i) can also be put in the following equivalent form. For each
open sphere B(f(a); ¢) centred at f(a), there exists an open sphere
B(a; 8) centred at a such that f(B (a; 6)) c B(f(a);¢).

Note 2. To verify that a given function between metric spaces is
continuous, the sequential characterization of continuous functions
given in (iii) is more useful. We shall apply (iii) to prove that the
properties of continuous functions also.

Note 3. All the above discussion in relation to convergence of
sequence and continuous functions given for metric spaces can be
easily modified for real valued functions defined on metric spaces.

Theorem 3. Let (M;,d;) and (M,,d,) be metric spaces and let
f:M; - M,, g:M,—> M. If f is continuous at a € M; and g is
continuous at f(a) € M, , then g o f is continuous at a.

Proof. Let (x,,) be a sequence in M; such that x, - a as n — oo. To
prove the theorem, we have to show that lim,_. g[f(x,)] =
glf(a)].Since f is continuous at a, we have lim,,_,., f(x,,) = f(a).

Lety, = f(x,) and y,, = f(a) asn — o in (M,, d,). Since g is
continuous lim,_. g(y,) = g(f(a)). substituting for y,, we get
limp,_,eo g(f (xn) ) = g(f (@)). Hence  gof:M; » My is
continuous .

To prove the result in R?, we can make use of any one of the three
equivalent metrics in R? given in Example. Without loss of
generality, let us take the second metric in Exampl. Hence, we have

d (R y0), R(x,¥)) = 1f (xn) — FCO1 + [g(m) — g )]
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Using the hypothesis (1) and (2) in the above expression, we have
dy(h(xn, y), h(x, y)) < g + g =¢ for alln>n, This shows that
h(x,, y,) = h(x,y) asn - o in R2,

Example 4. Let f:1? - [2. Let x = (x4, x5, ...) € [2. Let f(x) be defined
as f(x) = (0,xq, x5, ...), prove that f is continuous on [?.

Let s, = (x;™, x,™, ...) and let s, tend to s = (x4,x;,...) as n — o in [?
metric. We shall show that f(s,) = f(s)asn — o in [2.

d(Sn, S) = \/(xln — xl)Z + (xzn — xz)Z + o 4 (xkn — xk)Z + ... (1)

A(f (50, £(s)) =
JEam =)+ (o — )7+ " — 507+ (2)

Since (1) and (2) are the same, d(s,,s) = 0 asn — o in [
d(f(s,),f(s)) » 0asn - o in [2
Hence f is a continuous function.

CHECK YOUR PROGRESS

1. Ifdis a metricon M, is d? a metric on M?
2. Is[0,1] is open ball in M?
3. Define continuous.

2.5 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS

1. Consider d(x, y) defined on R by d(x,y) = |x — y|. We know that d
is a metric on R (refer example 1). d?(x,y) = |x — y|* = (x — y)?. But
d? is not a metric (refer example 9).

2. Let X = [0,1] with absolute value metric B (l ; l) isB (l ; 3) but
24 4" 4
B (l; l) is [0, E), since points in R to the left of 0 are not in M.
4° 2 4
3. A real valued function defined on R is said to be continuous at x = a

if limy_,, f(x) = f(a).

2.6 SUMMARY

1. A set equipped with a reasonable concept of distance is called a
metric space.

2. d is called a metric or distance function and d(x, y) is called the
distance between x and y.

3. Let (M, d) be a metric space and E be a subset of M. a € M is
called a cluster point or a limit point of E if for every r > 0, there exists
a b € E distinct from a such that d(a, b) <.



4. f(x) is said to approach L where L € M, as x approaches a, if
given € > 0 there exists a § > 0 such that d,(f(x),L) < ¢
when 0 < d,(x,a) < 8. We denote this by lim,_,, f(x) = L or
f(x) > Lasx - a.

5. Areal valued function defined on R is said to be continuous
atx = aiflim,_,, f(x) = f(a).

6. A sequence (x,) converges to a if and only if given ¢ > 0,
there exists a n, € N such that x,, € B(a; ¢€) for all n > n,,.

2.7 KEYWORDS

1. Metric Space: A set equipped with a reasonable concept of
distance is called a metric space.

2. Metric or distance function d is called a metric or distance
function and d(x, y) is called the distance between x and y.

3. Usual metric: A metric space denoted by (R, d) is defined by
d(x,y) = |x — y|. This metric d is called the usual metric
for R.

4. Discrete metric: Any non-empty set M we define d as

_(Oifx=y . : .
d(x,y) = {1 ifx=+y. Then d is a metric on M. This is called

the discrete metric on M.
5. n-dimensional Euclidean space: R" with usual metric is called
the n-dimensional Euclidean space.

2.8 SELF ASSESSMENT QUESTIONS AND

EXERCISES

1. Let (M, d) is a metric space. Define d;(x,y) = min{d(x,y), 1}.
Prove that (M, d,) is a bounded metric space.

2. Prove that in a metric space any subset of a bounded set is
bounded.
In R, with usual metric find B(1,1).

In R?, with usual metric find B((0,0), %).

. 11 . . . .
Determine (— > 5) U {1} is open in R with usual metric.

o oW

Find the diameter of the following subset of R with usual metric.

i. {1,3,5,7,9}.

ii. N

iii. Q.

iv.  [3,6] n[4,8].

7. Determine which of the following subsets of R are open in R with
usual metric.

a. R
b. (1,2) U (3,4).
c. (a,).
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3.0 INTRODUCTION

Theorems about continuous real-valued functions on a closed
bounded interval [a, b] such as, “If f is continuous on [a, b], then f
takes on a maximum and minimum values,”” and “If f is continuous on
[a, b], then f takes on every value between f(a) and f(b)” are tools in
the proof of the basic theorems in differential and integral calculus. We
deduce these theorems as special cases of theorems about continuous
functions on metric spaces. However, we first review the concept of
continuity in its most elementary form.

3.1 OBJECTIVES

After going through this unit, you will be able to:

¢ Understand what is meant by continuous functions in a point.
e Discuss reformulation.
e Describe bounded sets.

3.2 FUNCTION CONTINUOUS AT A
POINT ON THE REAL LINE
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Let a be a point in R and suppose f is a real-valued function
whose domain contains all points of some open interval (a — h,a + h)
where h > 0 including a itself.

Definition. We say that the function f is continuous at a € R if

lim,_,, f(x) = f(a).

The definition really demands that two conditions be fulfilled in
order that f be continuous at a. The first condition is that the
lim,_,, f(x) exists; the second is that this limit be equal to f(a). In
particular, if f(a) is not defined, then f cannot be continuous at a. For
example, the function f defined by

sinx

flx) = (xR, x#0)

is not defined at x = 0 and hence is not continuous at x = 0 even
through lim,._,¢(sin x/x) exists (and is equal to 1).

However, the function g defined by

sinx

g(x) = (x # 0),

X

g(0) =1,
is continuous at x = 0 since lim,_,, g(x) = g(0).

It is often the case that a function f fails to be continuous at a
point a because lim,_,, f(x) does not exist; more frequently, indeed,
than it fails because f(a) is not defined or because f(a) is not equal to
lim,_,, f(x). Consider, for example, the characteristic function y of the
rational numbers. That is,

x(x) =1 (x € R, xrational),
x(x) =0 (x €R,xirrational).

Then y(a) is defined for any a € R but lim,._,, y(x) does not
exist for any a. To see this, assume the contrary that lim,_,, y(x) = L
for some L € R. Given ¢ = % there would exist 6 > 0 such that |y (x) —
L| <§ if 0 <|x—al|<4é. Butin the interval (a,a + &) say, there is
both a rational number and an irrational. If x € (a,a + §) is rational we
would have |1 - L| < § while if x € (a,a + §) is irrational we would

have |0 — L| < § A contradiction follows easily.



On the other hand , most of the functions that are “easy to write
down” turn out to be continuous at all points where they are defined. For
example, we proved that lim,_;(x? + 2x) = 15. This shows that
function f is defined by

f(x) =x*+2x (x €ER)

is continuous at x = 3. For f(3) = 15 and lim,_5 f(x) = 15. The next
example in unit 2 shows that the function g defined by

gx) =+x+3 (0<x<2)
is continuous at x = 1.

Theorem 1. If the real-valued functions f and g are continuous at
a€R thensoare f+g,f—g, and fg. If g(a) # 0, then f/g is also
continuous at a.

Proof. Since f and g are continuous at a we have
lim,, f(x) = f(a) and lim,_, g(x) = g(a).

Then, by 4.1C, lim,_,[f(x) + g(x)] = f(a) + g(a). In other
“words,”

limxea(f + g)(x) = (f + g)(x)

This proves that f + g is continuous at a. The remainder of the
theorem is proved similarly.

A continuous function of a continuous function is continuous.
More precisely,

Theorem 2. If f and g are real-valued functions, if f is continuous at a,
and if g is continuous at f(a), then g o f is continuous at a.

Proof. We must show lim,_, g ° f(x) = g ° f(a) or,
lim,q g[f ()] = glf (a)].
That is, given € > 0 we must find § > 0 such that
lglf )] —glf(@]l <e (0<|x—al<é8). (1)
Let b = f(a). Now by hypothesis
lim,, gly] = g[bl.

Hence there exists n > 0 such that
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lgly] —glbll <& (ly — bl <mn). (2)

But, also by hypothesis,

limy_q f(x) = f(a).

Thus (using n where we usually use ) there exists § such that
lfC) - fl@l<n  (x—al<é),

If(x)=bl<n  (lx—al <. @)

Thus if |x —a] < § then f(x) is within n of b and so we may
substitute f(x) for y in (2). Hence

lglyl — glbll <& (ly —b| <mn).

Which implies (1), and the proof is complete.

3.3 REFORMULATION

We have defined “f is continuous at a” to mean lim,_,, f(x) =
f(a). That is, f is continuous at a if for any € > 0 there exists § > 0
such that |[f(x) — f(a)| <& (0 <|x—al| <&). However (as you were
asked to observe in the last proof), the inequality |f(x) — f(a)| <&
obviously holds if x = a. Thus, we need only write |x — a| < § instead
of 0 < |x — al| < &. Here then, is a reformulation of definition.

Theorem 3.The real-valued function f is continuous at a € R, if and
only if given € > 0 there exists § > 0 such that

If(x) = fla)l <e (Ix —al <6)

Then, f is continuous at a if for any € > 0 there exists § > 0
such that, if the distance from x to a is less than §, then distance from
f(x) to f(a) is less than &. Show that the definition of continuity is
based on the metric in R.

Definition. If a € R, and r > 0 we define B[a;r] to be the set of all
x € R whose distance to a is less than r. That is,

Bla;r] ={x e R||x —a| <r}.
We call B[a; r] the open ball of radius r about a.

It is clear that B[a; r] is just a fancy way of denoting the bounded
open interval (a + r,a — r). However, in an arbitrary metric space there
is no such thing as an interval. But the object B[a;r] does have a
counterpart in any metric space, which is the reason we defined it in
terms of distance.



Thus reads “f is continuous at a if and only if given € > 0 there
exists § > 0 such that f(x) € B[f(a); €] if x € B[a; §].” That is, the
entire open ball B[a; 8] is mapped by f into the open ball B[f (a); €] .

Thus, f is continuous at a if and only if, for any open ball B
about f (a), there is an open ball about a which f maps entirely into B. It
turns out to be more useful to be more useful to state this definition in
terms of inverse images.

Theorem 4.The real-valued function f is continuous at a € R if and only
if the inverse image under f of any open ball B[f(a);e] about f(a)
contain an open ball B[a; 8] about a. (That is, given € > 0 there exists
& > 0 such that

fBIf(a); e]) = Bla; 8]).

Our final reformulation of the continuity concept will be in terms
of sequences, observe first that the sequence {x,},-, converges to a if
and only if given & > 0 there exists N € I such that x, € Bla; €]
(n=N).

That is, given any open ball B about a, all but a finite number of
the x,, are in B.

Theorem 5.The real-valued function f is continuous at a € R if and only
if, whenever {x, },—, is a sequence of real numbers converging to a, then
the sequence {f (x,)}n=1 CONverges to f(a). That is, f is continuous at a
if and only if

lim,,_, . x, = a implies lim, L. f(x,) = f(a) (*).

Proof. Let us first assume that f continuous at a and prove that (*) holds.
Let {x,}n=q IS @ Sequence of real numbers converging to a. [Then f(x,)
will be defined for n sufficiently large.] We must show that
lim,_ f(x,) = f(a) that is, given € > 0 there exists N € I such that

f(xn) € Blf (a); €] (n = N). 1)
But since f is continuous at a € R there exists § > 0 such that
f(x) € Blf(a); €] (x € Bla;6]). (2

Furthermore, since lim,,_,,, X, = a, there exists N € I such that
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x, € B[a; 5] (n = N). 3)

For this N, (1) follows from (2) and (3).

Conversely, suppose (*) holds. We must prove that f is
continuous at a. Assume the contrary. Then, for some ¢ > 0 the inverse
image under f of B = B[f(a);&] contains no open ball about a. In

particular, f~1(B) does not contain B[a; %] for any n € I. Thus, for each
n € I, there is point x,, € B|a; %] such that f(x,) € B. Thatis
[ — al < S but|f () — f(@)] 2
This clearly contradicts (*), so f must be continuous at a.
lim g[f (xn)] = glf (a)]
Where {x,,},—; is any sequence of real numbers such that
lim x,, = a.
n—->oo

Since f is continuous at a, imply (1) and the proof is contradict.

3.4 BOUNDED SETS IN METRIC SPACE

Definition. Let (M, d) be a metric space. We say that a subset A of M is
bounded if there exists a positive real number k such that d(x,y) < k

for all x,y € A.

Definition. Let (M, d) be a metric space. Let A € M. Then the diameter
of A, denoted by d(A), is defined by d(A) = L.u.b{x € A|x,y € A}.

Note 1. A non-empty set A is a bounded set iff d(A) is finite.

Note 2. Let A,B € M. Then A € B = d(A) < d(B).

3.5 PROBLEMS

Example 1. Any finite subset A of a metric space (M, d) is bounded.
Proof. Let A be any finite subset of M.

If A= @ then A is obviously bounded.



Let A # ®. Then {d(x,y)|x,y € A} is a finite set of real numbers. Let
k = max {d(x,y)|x,y € A}. Clearly d(x,y) < k forall x,y € A.

~ A is bounded.

Example 2. [0,1] is a bounded subset of R with usual metric since
d(x,y) < 1forall x,y € [0,1].

More generally any finite interval and any subset of R which is

contained in a finite interval are bounded subsets of R.
Example 3. (0, o) is a unbounded subset of R.

Example 4. If consider R with discrete metric, then (0, ) is a bounded

subset of R, since d(x,y) < 1 forall x,y € (0, ).

More generally any subset of a discrete metric space M is bounded

subsets of M.

Example 5.In [, lete; = {1,0,...,0,...},e, = {0,1,0,...,0, ... },e5 =
{0,0,1,..,0,...}, ...

Let A ={es, 5, ..., €, .0 }

Then A is a bounded subset of [,.

V2 ifn#m

Proof. d(e,, = {
roof. d(en, em) 0 ifn=m.
. d(en en) <V2forall e, e, € A.

~ Ais a bounded set in [,.

axy)
1+d(x,y)’

Example 6. Let (M, d) be a metric space. Define d;(x,y) =
We know that (M, d,) is also a metric space.
Also di(x,y) < 1forall x,y € M.

Hence (M, d,) is a bounded metric space.
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Example 7. The diameter of any non-empty subset in a discrete metric

space is 1.

CHECK YOUR PROGRESS

1. d(®)?
2. Define diameter

3. Describe length of an interval.

3.6 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS

1. In any metric space, d(®) = —oo.

2. Let (M, d) be a metric space. Let A M. Then the diameter of A,
denoted by d(A), is defined by d(A) = l.u.b{x € A|x,y € A}.

3. In R the diameter of any interval is equal to the length of the interval.

For example the diameter of [0,1] is 1.

3.7 SUMMARY
1. The function f is continuous at a € R if lim,_,, f(x) = f(a).
2. If the real-valued functions f and g are continuous at a € R, then

soare f+g,f —g, and fg. If g(a) # 0, then f/g is also continuous at
a.

3. If £ and g are real-valued functions, if f is continuous at a, and if
g is continuous at f(a), then g o f is continuous at a.

4. If a € R, and r > 0 we define B[a;r] to be the set of all x € R
whose  distance to a is less than r. That s,
Bla;r] = {x € R||x — a| < r}. We call B[a; r] the open ball of radius r

about a.




5. Let (M, d) be a metric space. Let A M. Then the diameter of A,
denoted by d(A), is defined by d(A) = l.u.b{x € A|x,y € A}.
6. A non-empty set A is a bounded set iff d(A) is finite.

3.8

KEYWORDS

. Continuous: The function f is continuous at a € R if

lim,_,, f(x) = f(a).

. Open ball: If a € R, and r > 0 we define B[a;r] to be the

set of all x € R whose distance to a is less than r. That is,
Bla;r] = {x € R||x — a| < r}. We call B[a; ] the open ball
of radius r about a.

Bounded: Let (M, d) be a metric space. We say that a subset
A of M is bounded if there exists a positive real number k
such that d(x,y) < k forall x,y € A.

Diameter: Let (M, d) be a metric space. Let A € M. Then
the diameter of A, denoted by d(A), is defined by d(A) =
L.u.b{x € Alx,y € A}.

. Usual metric: A metric space denoted by (R, d) is defined

by d(x,y) = |x —yl|. This metric d is called the usual

metric for R.

. Discrete metric: Any non-empty set M we define d as

0 .lf x=Y Then d is a metric on M. This is
lif x #y.

d(x,y) = {
called the discrete metric on M.
n-dimensional Euclidean space: R™ with usual metric is

called the n-dimensional Euclidean space.

3.9

SELF ASSESSMENT QUESTIONS AND
EXERCISES

Let (M,d) is a metric space. Define d;(x,y) =

min{d(x, y), 1}. Prove that (M, d,) is a bounded metric space.

2. Prove that in a metric space any subset of a bounded set is

bounded.
In R, with usual metric find B(1,1).

4. In R?, with usual metric find B((0,0), %).
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8. Determine —l,l U {1} is open in R with usual metric.
2’2 p
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4.0 INTRODUCTION

In mathematics, a metric space aimed at is subspace is a categorical
construction that has a direct geometric meaning. It is also a useful
step toward the construction of the metric envelops, or tight span,
which are basic objects of the category of metric spaces.

4.1 OBJECTIVES

After going through this unit, you will be able to:

e Understand what is meant by subspaces.
e Determine if subsets of a metric space are open, closed sets.
e Discuss limit point, closure and dense set.

4.2 SUBSPACE

Definition. Let (M, d ) be a metric space. Let M; be a non-empty
subset of M. Then M, is also a metric space with the same metric d.
we say that (M,, d) is a subspace of (M, d).

Self-Instructional material




Subspaces

NOTES

Self-Instructional material

Note. If M, is a subspace of M a set which is open in M; need not be
openin M.

For example, if M = R with usual metric and M; = [0,1] then

[0, %) is open in M; but not open in M.

We now proceed to investigate the nature of open sets in
subspace M; of a metric space M.

Theorem 1. Let M be a metric space and M, a subspace of M. Let
A; € M;. Then A, is open in M, iff there exists an open set A in M such
thatA1 = A N Ml'

Proof. Let M; be a subspace of M. Let a € M;.
We denote B;(a,r) the open ball in M; with center a, radius r.
Then B;(a,r) = {x € M,|d(a,x) < r}.
Also, B(a,r) = {x € M|d(a,x) <r}.
Hence, B,(a,r) = B(a,r) "N M;. ... (D
Now, let A; be an open setin M;.

Ay = UxEAlB(x'r(x))
= Uxea,[B(x,7(x)) N M;] (by
1)

= [UxEA1 B(x, r(x))] N M.
= AN M, where A = Uyeq, B(x,7(x)) which is open M.
Conversely, let A; = A N M; where A is open in M.
We claim that A, is open in M;.
Letx € A;.
~x€Aandx € M;.

Since A is open in M there exists a positive real number r such
that B(x,r) € A.

&~ M;NB(x,r) € M; NnA.



i.e. By(x,r) € A (using (1))
~ A isopenin M; .
Example 1. Let M = Rand M; = [0,1]. Let 4; = [0,7).

Now A; = [O, %) = (3, —%) N [0,1] and G, —%) is open in R.

2

+ [0,5) is open in [0,1].

SOLVED PROBLEMS

Problem 1. Let M, be a subspace of a metric space M. Prove that
every open set A; of M;is open in M iff is open in M.

Solution. Suppose that every open set A; of M; is open in M.
Now, M; is open in M;.
Hence M, is open in M.
Conversely, suppose M; is open in M.
Let A; be an open set in M;.

Then by theorem 1, there exists an open set A in M such that
A1 = A n Ml'

Since A and M; are open in M;we get A, is open in M.

4.3 INTERIOR OF A SET

Definition. Let (M, d) be a metric space. Let A € M. Let x € A. Then x

is said to be an interior of A if there exists a positive real number r
such that B(x,r) € A.

The set of all interior points of A is called the interior of A
and it is denoted by Int A.

Note. Int A € A.

Example 1. Consider R with usual metric.
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(a) Let A = [0,1]. Clearly 0 and 1 are not interior points of A and
any point x € (0,1) is an interior point of A. Hence Int A = (0,1).

(b)Let A = Q. Let x € QThen for any positive real number 7,
B(x,7) = (x —r,x + r) contains irrational numbers.

~ B(x,r) is not a subset of Q.

~ x is not an interior point of Q

Since x € Q is arbitrary, no point of Q is an interior point of Q.
sIntQ=7>

(c) Let A be a finite subset R. Then Int A = ®.

(d)LetA = {0,1,%, ...... ,%, } Then Int A = ®.

Example 2. Consider R with discrete metric.

Let A =[0,1]. Let x € [0,1].

Then B (x, %) ={x}C A

=~ x is an interior point of A.

Since x € [0,1] is arbitrary Int A = A.

Basic properties of interior are given in the following theorem.
Theorem 2. Let (M, d) be a metric space. Let A,B € M.

(i) Aisopen iff A=Int A. In particular Int ® = ® and Int M = M.

(ii) Int A = Union of all open sets contained in A.

(iii) Int A is an open subset of A and if B is any other open
set contained in Athen B € Int A .i.e. Int A is the largest open set
contained in A.

(iv) ACS B=IntACcIntB.

(v)Int (AN B) =IntAnNIntB.

(vi) Int (AU B) 2 Int AUInt B.
Proof.

(i) Follows from the definitions of open set.
(i) Let G = U{B|B is an open subset of A}.



To prove that Int A = G.

Let x € Int A.

=~ There exists a positive real number r such that
B(x,r) € A.

Thus B(x, ) is an open set contained in A.

~ B(x,r) € G.

~ X EQG.

~IntAcG. .. (1)

Now, let x € G.

Then there exists an open set B such that x € B and B € A.

Now, since B is open and x € B there exists a positive real
number r such that B(x,r) € B € A.

-~ x is an interior point of A.
HenceG € IntA. .. (2)
From (1) and (2), we get G = Int A.
(iii)  Since union of any collection of open sets is open
(ii)= Int A is an open set.
Trivially Int A < A.
Now, let B be any open set contained in A.
Then BSG=Int A. (by 2)
=~ Int A is the largest open set contained in A.

(iv) Letx € Int A.
=~ There exists a real number r>0 such that B(x,r) CA.
But A € B.Hence B(x,r) € B.
- x € Int B. Hence Int A € Int B.

(v AnBCcA.

~Int (AN B) C Int A. (by (iv))
Similarly Int (A N B) < Int B.
~Int(AnB)SIntAnIntB. ... (1)

Now, Int A € A; IntB € B.
HenceInt AnIntB < ANB.
Thus Int A N Int B is an open set contained in A N B.

But Int (A N B) is the largest open set contained in A N B.

~IntAniIntB < Int (AN B)
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From (1) and (2) we get Int (AN B) =Int AN Int B.

(vi) AC AUB.
~IntAc (AUB) (by (iv))
Similarly, Int A€ (AU B)
~IntAulnt B € Int (AU B).

Note. Int (A U B) need not be equal to Int A U Int B.

For example, in R with usual metric consider A = (0,2] and
B = (2,3).

But, Int AU Int B = (0,2) U (2,3) = (0,3) — {2}.

~ Int (AU B) # IntA U IntB.

4.4 OPEN SET

Definitions. Let (M, d) be a metric space. Let A be a subet of M. Then
A is said to be open in M if for every x € A there exists a positive real
number r such that B(x,r) € A.

Example 1. In R with usual metric (0,1) is an open set.
Proof. Let x € (0,1).
Choose r = min{x — 0,1 — x} = min{x, 1 — x}.
Clearlyr > 0and B(x,7r) = (x —r,x +1r) < (0,1).
= (0,1) is open.

Example 2. In Rwith usual metric [0,1) is not open since no open ball
with center 0 is contained [0,1).

Example 3. Consider M = [0,2) with usual metric. Let A = [0,1) S M.
Then A is open in M.

Proof. Let x € [0,1).

If x = 0 then B (0%) - [0%) c A

If x # 0 choose r = min{x, 1 — x}.
Clearlyr > 0and B(x,r) = (x —r,x + 1) < (0,1).
~ Aisopenin M.

Example 4. Any open interval (a, b) is an open set in R with usual
metric.

Proof. Letx € (a,b).



Letr = min{x —a, b — x}.
Then B(x,r) < (a, b). Hence (a, b) is an open set.
Note. Similarly we can prove that (—oo, a) and (a, ) are open sets.

Example 5. In R with usual metric any finite non-empty subset 4 of R
is not an open set.

Proof. Any open ball in R is a bounded open interval which is an
infinite subset of R. Hence it cannot be contained in the finite subset
A. Hence A is not open in R.

Example 6. Q is not open in R.

Proof. Let x € Q. Then for any r > 0 the interval (x —r,x + 1)
contains both rational and irrational numbers.

& (x —r,x + r) is not a subset of Q.
~ Q is not open in R.
Example 7. Z is not open in R.

Proof. Let x € Z. Then for any r > 0 the interval (x —r,x + r) isnota
subset of Z. Hence Z is not open in R.

Theorem 3. In any metric space M.

@) ® is open.
(i) M isopen.

Proof. (i) Trivially @ is an open set.

(i))Let x € M. Clearly forany r > 0 B(x,r) S M.Hence M is
an open set.

Theorem 4. In any metric space (M, d) each open ball is an open set.
Proof. Let B(a,r) be an open ball in M.
Letx € B(a,r).

Thend(a,x) <.
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~r—d(a,x)>0.

Letr; =r —d(a,x).

We claim that B(x,r;) € B(a,r).
Lety € B(x,1y)

~d(x,y) <r =r—d(ax).

~d(x,y)+d(a,x)<r (1
Now, d(a,y) <d(a,x) +d(x,y) <r (by (1)).

~d(a,y)<r.
~y€B(ar)

Hence B(x,r;) € B(a,r).
~ B(a,r) is an open set.

Theorem 5. In any metric space the union of any family of open sets
is open.

Proof. Let (M, d) be a metric space.
Let {4;|i € I} be a family of open sets in M.
LetA = Ui/ 4;
If A = & then A is open.
Therefore, let A # ®. Let x € A.
Then x € A; for some i € I.

Since A; is open there exist an open ball B(x, r) such that
B(x,r) € A,.

~ B(x,r) € A.
Hence A is open.

Theorem 6. In any metric space the intersection of a finite number of
open sets is open.

Proof. Let (M, d) be a metric space.
LetA,,A,, ..., Ay, .... be open setsin M.



IfA= . Letx € A.
~x €A; foreachi=12,..,n.

Since each 4; is an open set there is a positive real number 7;
such that
B(x, T'i) - Ai. (1)

Letr = min{ry, 7y, ..., 1, }.

Obviously r is a positive real number and B(x,r) € B(a,r;) for
alli =1,2,...,n.

Hence B(x,r) € A; foralli = 1,2,...,n. (by1)
=~ B(x,r) € NL, A;.

~ B(x,r) € A.

~ Ais open.

Note. The intersection of an infinite number of open sets in a metric
space need not be open.

For example, consider R with usual metric.

11
LetAn = (_;'Z)
Then A,, is open in R for all n. (refer example 4)
But N;2, A, = {0} which is not open in R. (refer

example 5)

We now give a characterization of open sets in terms of open
balls.

Theorem 7. Let (M, d) be a metric space. Let A be any non-empty
subset of M. Then A is open iff A can be expressed as the union of a
family of open balls.

Proof. Let A be a non-empty open subset of M.
Letx € A.

Since A is an open set there exists an open ball B(x, ;) such
that B(x, ) € A.

Clearly Uyeq B(x, 1) = A.

Thus A is the union of a family of open balls.
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Conversely, let A be a union of open balls.

NOTES Then A is open.

SOLVED PROBLEMS

Example 1. Let (M, d) be a metric space. Let x, y be two distinct points
of M. Prove that there exist disjoint open balls with centers x and y
respectively.

Solution. Since x # y, d(x,y) =r > 0.
Consider the open balls B(x, ir) and B (y, ir).

We claim that B(x,%r) N B(y,%r) =0
Suppose B(x,ir) N B(y,ir) * O
Letz€ B (x,ir) NnB (y,ir).

L ZE B(x,ir) and z € B(y,%r).
~d(x,z) < ir andd(y,z) < ir.

Now, d(x,y) < d(x,z) + d(z,y).
arSir+ir=%r

Which is a contradiction.

Hence B (x,ir) NnB (y,ir) = o,

Example 2. Let (M, d) be a metric space. Let x € M. Show that {x}¢ is
open.

Solution. Lety € {x}°. Theny # x.
~d(x,y)=r>0.
Cleary B(y,%r) c {x}°.
~ {x}¢is open.

Example 3. Let (M, d) be a metric space. Show that every subset of M
is open iff {x} is open for all x € M.

Solution. Suppose every subset of M is open.

Then obviously {x} be open for all x € M.
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Conversely, let {x} be open for all x € M.

Let A be any subset of M.

If A = @ then A is open.

Let A # ®@. Then A = Uyeafx}.

By hypothesis {x} is open.

Hence 4, is open.
Example 4. Let A = {(an)|(an) €l,and [Y-, a?l]l/Z < 1}. Prove
that A is an open subset of [,.
Solution. We first prove that A = B(0,1) where 0 = (0,0,0, ....)
Let x € A. Hence [X5; x2]? < 1.

2 d(x,0) = [T (xn — 02172 = [E7, 28] /2 < 1

Thusd(x,0) <1

.~ x € B(0,1)

~ A S B(0,1) (1)

Now, lety € B(0,1)

~d(0,y) <1

IO~ 0272 <1

[ On)? 2 < 1

Ly €EA.

~ B(0,1) € A. (2)

By (1) and (2) we get A = B(0,1)

Now, the open ball B(0,1) is an open set.

~ A is an open set.

Example 5. Prove that any open subset of R can be expressed as the
union of a countable number of mutually disjoint open intervals.

Solution. Let A be an open subset of R. let x € A. Then there exists a
positive real number r such that B(x,r) = (x —r,x + r) € A.
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Thus there exist an open interval [ suchthatx € land/ € A

NOTES Let I, be denote the largest open interval such that x € I and
LLSA

Clearly U,eq I, = A.

Now let x,y € A.

We claimthatl, = I, or, NI, = ®

Suppose I, N I, # @

Then I, U I, is an open interval contained in A.

But I, is the largest open interval such that x € I, and I,, € A.
~ I, UL, =1I,sothatl, €I,

Similarly I, < I,,.

= Iy = I,,. Thus the intervals I, are mutually disjoint.

We claim that the set F = {I,.|x € A} is countable.

Now for each I, € F choose a rational number r, € I,.

Since the intervals I, are mutually disjoint I, = I, = 7 # 73,
~ fiF — Q defined by f(I,,) = r, is 1-1.

-~ F is equivalent to a subset of Q which is countable.

=~ F is countable.

Definition. Let d and p be the two metrics on M. Then the metrics d
and p are said to be equivalent if the open sets of (M, p) are the open
sets of (M, d) and conversely.

Example 6. Let (M, d) be a metric space. Define p(x,y) = 2d(x, y).
Then d and p are equivalent metrics.
Solutions. We know that p is a metric on M.

We first prove that B, (a,7) = B,(a, 21)
Letx € B;(a,r)
~d(a,x)<r.

~2d(a,x) < 2r.
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~ p(a,x) < 2r.Hence x € B,(a, 2r)
~Bg(a,7) € By(a,2r) (D
Now, let x € Bp(a, 2r)
~ p(a,x) < 2r.
1
Ep(a, x) <.
~d(a,x) <r.Hence x € By(a,r).
B,(a,2r) € By(a,1) eeeeen(2)
~By (1) and (2) we get By(a,7) = B,(a,2r). ....(3)

Now, let G be any open subsetin (M, d). Let € G . Hence there
exists r > 0 such that B;(a,r) € G.

~ B,(a,2r) €G.
~ G isopenin (M, p).
Conversely, suppose G is open in (M, p).

Let a € G. Hence there exists r>0 such that B,(a,7) € G.
Hence By (a,%r) C G (using 3). Hence G is open in (M, d).

~ d and p are equivalent metrics.

a(x.y)

Example 7. Let (M, d) be a metric space. Define (x,y) = Ay

Prove that d and p are equivalent metrics on M.

Solution. We know that p is a metric on M.We first prove
B, (a,7) = B4(a, i) provided 0 < r < 1.

Letx € B,(a,r). Hence p(a,x) <.

d(ax)
" 1+d(ax) <T

~d(a,x) <r[1+d(ax)]

~d(a,x)[1-r] <.

r
[1-7]

~d(a,x) < (since0 <r < 1)
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X € By (a, %)
+ By(a,m) € By (a,=). e (1)
Now, let x € B, (a, 1%) Hence d(a, x) < lrj

sdlax)[1—-r]<r

~d(a,x) <r[l+d(ax)].

. d(ax)
" 1+d(ax) )

~p(a,x)<r.

~x € By(a,r).

~ By (a, #) € B,(a,1)
e (2)

By (1) and (2) we get Bd (a, é) = Bp (Cl, T').
(3

Now, let G be open in (M, p).

Let a € G. Hence there exists r > 0 such that B,(a,7) € G.

Without loss of generality we may assume thatr < 1.
- By (a, —)c6 (By (3)).

~ G isopenin (M, d).

Conversely, let G be open in (M, d).

= There exists r > 0 such that B;(a,r) € G.

~ By (a, 1%) C G  (using3).

~ G is open in (M, p).

Hence d and p are equivalent metrics.

Example 8. If d and p are metrics on M and if there exists k > 1 such
that %p(x, y) <d(x,y) < kp(x,y) forall x,y € M. Prove that d and p

are equivalent metrics.



Solution. Suppose there exists k > 1 such thatforall x,y € M

%p(x, y)<dxy) <kp(xy) . €))

Let G be an open set in (M, d).

Let a € G. Hence there exists r > 0 such that B;(a,r) € G.

We now claim that B, (a, %) caG. N 7))
Letx € B, (a, i)

s opla,x) < %

~ kp(a,x) <r.

~pla,x)<r. (using 1)

~“x €By(a,r) G (by2)

- x € G.Hence Bp(a,i) caG.

~ G isopenin (M, p)

Conversely, let G be openin (M, p).Leta € G.

~. There exists r > 0 such that B,(a,7) S G.

(3)

. T
We claim that B, (a, E) caG.

S X € By (a, £)

sod(a,x) < £

o kd(a,x) <.

~ pla,x) <r. (using 1)
~x €By(a,r) =G (by3)

- x € G.Hence Bd(a,i) cG.
Hence G is open in (M, d).

~ d and p are equivalent metrics.
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4.5 CLOSED SETS

Definition. Let (M, d) be a metric space. Let A € M. Then A is said to
be closed in M if the complement of 4 is open in M.

Example 1. In R with usual metric any closed interval [a, b] is closed
set.

Proof. [a, b) is not open in R since a is not an interior point of [a, b).
Now, [a,b)¢ = R —[a,b) = (—o0,a) U (b, ).

Also (—o, a) and (b, ©) are open in R.

i.e. [a, b]¢ is open in R.

=~ [a, b] is closed in R.

Example 2. In R with usual metric [a, b) is neither closed nor open.
Proof. [a, b) is not open in R since a is not an interior point of [a, b).

Now, [a,b)¢ = R — [a,b) = (—o0,a) U [b, ©) and this set is not open
since b is not an interior point.

~ [a, b) is not closed in R.

Hence [a, b) is neither open not closed in R.

Example 3. In R with usual metric (a, b] is neither closed nor open.
Proof is similar to example 2.

Example 4. Z is closed.

Proof. Z¢ = Up-_(n,n + 1).

The open interval (n,n + 1) is open and union of open sets is open.
Z° is open. Hence Z is closed.

Example 5. Q is not closed in R.

Proof. Q¢ = the set of irrationals which is not open in R.
Therefore, Q is not closed in R.

Example 6. The set of irrational numbers is not closed in R.

Proof is similar to that of example 5.

Example 7. In R with usual metric every singleton set is closed.



Proof. Leta € R.
Then {a}¢ = R — {a} = (—,a) U (a, ).

Since (—oo,a) and (a, o) are both open sets (—o0,a) U (a, ) is
open.

=~ {a}‘ is open R. Hence {a} is closed in R.

Definition. Let (M,d) be a metric space. Let a € M. Let r be any
positive real number. Then the closed ball or the closed sphere with
center a and radius r, denoted by By [a, r], is defined by

B;la,r] = {x € M|d(a,x) < r}.

When the metric d under consideration is clear we write B[a,r]
instead of By[a, r].

Example 1. In R with usual metric B[a,r] = [a —r,a + 7].
Example 2. In R? with usual metriclet a = (a4, a,) € R2.
Then Bla, 7] = {(x,y) € R?|(ay,ay), (x,y) < r}.

={(0y) ER*|(x —ap)? + (y —ax)* < r?}.

Hence Bla,r] is the set of all points which lie within and on the
circumference of the circle with center a and radius 7.

Theorem 8. In any metric space every closed ball is a closed set.
Proof. Let (M, d) be a metric space.

Let B[a,r] be a closed ball in M.

Case (i). Suppose B[a,r]¢ = ®.

~ B[a,r]¢ isopen and hence BJa,r] is closed.
Case (ii). Suppose B[a, ] # ®.

Letx € Bla,r]".

~ x € Bla,r]°.

~d(a,x) >r.

~d(a,x)—r>0.

Letr, =d(a,x) — .

We claim that B(x,r;) € Bla,r]¢.
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Lety € B(x,1y).
Thend(x,y) <r =d(a,x) —r.
~d(a,x) >d(x,y)—r.
Now, d(a,x) < d(a,y) + d(y, x).
~d(a,y) =d(a,x)—d(y,x).

>d(x,y)+r—d(y,x) (byl).

Thus d(a,y) > r.
~y & Bla,r].

Hence y € Bla,r]°.

~ B(x,r)) € Bla,r]°.
~ Bla,r]¢ is open in M.
~ Bla,r] is closed in M.
Theorem 9. In any metric space M, (i) @ is closed, (ii) M is closed.
Proof. Since M = @ is open. M is open.
Similarly, ®¢ = M is open and hence is @ is closed.

Note. We note that in any metric space M, ® and M are both open and
closed.

Theorem 10. In any metric space arbitrary intersection of closed sets
is closed.

Proof. Let (M, d) be a metric space.

Let {A;|i € I} be a collection of closed sets.

We claim that N;¢; 4; is closed.

We have (N;e; 4;)€ =U;e A;°. (by De Morgan’s law)
Since 4; is closed 4;€ is open.

Hence U;¢; 4;€ is open. (By theorem 3)

~ (Ner 4;)€ is open.



= Nier 4, is closed.

Theorem 11. In any metric space the union of a finite number of
closed set is closed.

Proof. Let (M, d) be a metric space.
Let A4, A4,, ...., A, be closed sets in M.

By De-Morgan’slaw (4; UA, U ...UA,)° = A;°NA4,°n..NnA,°.
(by theorem 4)

Since each 4; is closed 4;° is open.
Hence A, N 4,° N ...n A,° is open.
~ (A UA, U ....UA,)¢is open.
Hence A; UA, U ....U 4, is closed.

Note. The union of an infinite collection of closed sets need not be
closed. For example, consider R with usual metric.

Let A, = |~,1| wheren = 1,2, ..

w w [1 1 1

Then Uy A, = Ui [+, 1| = (o [5,1] u 5, 1] v
= (0,1] which is not closed in R.

% Un=1 4, is not closed.

Theorem 12. Let M be a metric space and M; be a subspace of M. Let
F; € M,. Then F; is closed in M; iff there exists a set F which is closed
in M such that F; = F N M;.

Proof. Let F; be closed in M;.
~ M; — F; is closed in M;.
~ M; — F, = An M;, where A is open in M. (by theorem 6)
Now, F; = M; — (AN M,).
=M, —A=A°NM,.
Also, since A is open in M, A€ is closed in M.
~ F;, = F N M; where F = A€ is closed in M.

Proof of the converse is similar.
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4.6 CLOSURE

Let (M, d) be a metric space. Let A € M. Consider the collection of all
closed sets which contain A. This collection is non empty since at
least M is a member of this collection.

Definition. Let A be a subset of metric space (M, d). The closure of 4,
denoted by A4 is defined to be the intersection of all closed sets which
contain A.

Thus A = U{B|B is closed in M and A < B}.

Note. Since intersection of any collection of closed set A 2 A. Also if B
is any closed set containing A then A € B. Thus A is the smallest
closed set containing A.

Theorem 13. A is closed iff A = A.
Proof. Suppose A = A.
Since A is closed A is closed.

Conversely, suppose A4 is closed. Then the smallest closed set
containing A is A itself.

~ A=A
Note. In particular () ® = & ({{)M =M (iii))4 =
Example 1. Consider R with usual metric.

(a) Let A = [0,1]. We know that A is a closed set.
~A=A=1[01].
(b)Let A = (0,1). Then [0,1] is a closed set containing (0,1).
Obviously [0,1] is the smallest closed set containing (0,1).
~ A=[01].

Example 2. In a discrete metric space (M, d) any subset 4 of M is
closed. Hence A = A.

Theorem 14. Let (M, d) be a metric space. Let A,B € M.

(i) AUB) =4
(iii)) ANB) =

Then (i) AS B=ACB.
UE
NnB

Proof. (i) Let A € B.



Now, B 2 B 2 A.
~ B is a closed set containing A.
But 4 is the smallest closed set containing A.
~ACcB.
(i)we have A € AU B.

~ACS AUB. (by(i).

Similarly, B € A U B.
~AUBC AUB.

Now A is a closed set containing A and B is a closed set containing B.
~ AU Bis a closed set containing A U B.

But A U B is the smallest closed set containing A U B.

~AUBCAUB
From (1) and (2) weget AUB C AUB

(iii) Wehave ANB C A.
ANBc A. (by(i).

Similar, A N B < B.

~ANBCANB.
Note. A N B need not be equal to A N B.
For example in R with usual metric, take A = (0,1) and = (1,2).

Then AN B = &.

But,AnB =[0,1]n[1,2] = {1}.
~ANB#ANB.

Note. In a metric space (M, d) if E1, E,, ...., E,, are subset of M then
E,UE,U ...UE, = E; UE, ....U E,. This is an extension of result (ii)
of theorem 2.14.
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NOTES 4.7  LIMIT POINT

In this section we introduce the concept of limit point of a set. This
concept can be used to characterize closed sets and describe the
closure of a set.

Definition. Let (M, d) be a metric space. Let A € M. Let x € M. Then x
is called a limit point or a cluster point or an accumulation point of 4 if
every open ball with center x contains at least one point of A different
from x.

(i.e) B(x,7r) N (A—{x}) # @ forallr > 0.

The set of all limit points of A is called the derived set of A and is
denoted by D (A).

Note. x is not a limit point of A iff there exists an open ball B(x, )
such that B(x,7) N (A — {x}) = ®.

Example 1. Consider R with usual metric.

(@) Let A = [0,1].
Any open ball with center 0 is of the form (—r, ) which contains a
point of [0,1) other that 0.
Hence 0 is a limit point of [0,1).
Similarly 1 is a limit point of [0,1).

2 is not a limit point of 4, since

(z —%,2 +%) n[01) = (;g) n[01) = ®.

In this case all points of [0,1] are limit points of [0,1) and no other
points is a limit point.

Hence D[0,1) = [0,1].
(b)LetA = {1,%,%, - ,%, - } Here 0 is a limit point of A.
For, consider any open ball (—r,r) with center 0.
Choose a positive integer n such that% <r.
Then% € (—r,1).

~ (=7, r) contains a point of A which is different from O.
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~ 0 is a limit point of A.

1 is not a limit point of A since

(-Laed)na-mp=Caftl. L )0
pltg)nUA-=(7.7)0iz5 - j=
In fact any point except zero is not a limit point of 4 (verify).

~ D(A) ={0}.

(c) Consider Q. Any real number x is a limit point of Q, since any
interval (x + r,x — r) contains infinite number of rational
numbers.

~D(Q) =R
Example 2.In R X R with usual metric, D(Q X Q) = R X R.
The proof is similar to example (d) of 1.
Example 3. Let (M, d) be a discrete metric space.

LetA € M. Letx € M.
Then B (x, %) NMA—{x}) ={x}nA-{x}) = .

=~ x is not a limit point of A.
Since x € M is arbitrary A has no limit point.
~ D(A) = .
Thus any subset of a discrete metric space has no limit point.
Example 4. Consider C with usual metric.
Let A = {z||z| < 1}.
Then D(A) = {z| |z| £ 1}.

Theorem 15. Let (M, d) be a metric space. Let A € M. Then x is a limit
point of A iff each open ball with center x contains an infinite number
of points of A.

Proof. Let x be a limit point of A.

Suppose an open ball B(x, r) contains only a finite number of points
of A.

Let B(x,r) N (A — {x}) = {xq, x5, ..., X }-
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Letr; = min{d(x, x;)|i = 1,2, ...,n}.
NOTES Since x # x;, d(x,x;) > 0foralli = 1,2,...,nand hence r; > 0.
Also B(x,r) N (A — {x}) = .

=~ x is not a limit point of A which is a contradiction.

Hence every open ball with center x contains infinite number of
points of A.

The converse is obvious.

Corollary. Any finite subset of a metric space has no limit point.
Proof. Let A be a finite subset of M.

Suppose A has limit point say x. Then B (x, r) contains infinite
number of points of A. This is a contradiction since A4 is finite.

Theorem 16. Let M be a metric space and A € M. Then A = AU D(A).
Proof. Let x € A U D(A). We shall prove that x € A.
Suppose x & A.
. x € M — Aand since A is closed M — A is open.
- There exists an open ball B(x,7) € M — A.

~Blx,r)NA =,
~B(x,r)NA=®. (sinced CA)
~ x & AU D(A) which is a contradiction.

~x €A

~AUD(A) c A (1)
Now let x € A. To prove x € A U D(A).
If x € Aclearly x € AU D(A).

Suppose x € A. We claim that x € D(A4).

Suppose x € D(A). Then there exists an open ball B(x, r) such that
B(x,r) N A = ®.

=~ B(x,7)° 2 Aand B(x,7)°¢ is closed.
But A is the smallest closed set containing A.

~ A S B(x,7)°.
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Butx € Aand x & B(x,7)¢ which is a contradiction.
Hence x € D(A).

~x €AUD(A.
~ACAUD). ..(2)
From (1) and (2) we get A = A U D(A).
Corollary 1. A is closed iff A contains all its limit points.
i.e. Ais closed iff D(4) € A.
Proof. A is closed © A = A.

S A=AUD(4)

& D(A) € A

Corollary2.x € A & B(x,7)NA # ® forallr > 0.
Proof. Let x € A, then x € A U D(A).
~x €Aorx € D(A).
If x € Athenx € B(x,r) N A.
Ifx € D(A) then B(x,7r) N A # ® forall r > 0.
Hence in both cases B(x,7r) N A # ® for all v > 0.
Conversely, suppose B(x,7r) N A # @ forallr > 0.
We have to prove that x € A.
If x € Atrivially x € A.
Letx ¢ A.Then A — {x} = A.
~Bl,r)N(A—{x}) # ®.
. x € D(A).
~x €A.
Corollary 3.x € A & G N A # @ for every open set G containing x.
Proof. Let x € A.
Let G be an open set containing x. Then there exists r > 0 such that

B(x,r) € G.
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Also, since x € 4, B(x,r) N A # &.
~GNA# .

Conversely, suppose G N A #= ® suppose G N A # @ for every open
set G

containing x.

Since B(x,r) is an open set containing x, we have B(x,r) N A # &.

s x €A
Example 1. Consider R with usual metric.

(a) LetA =[0,1).
Then A = AU D(4).
= [0,1) U [0,1].
= [0,1].

11 1
(b)Let A= {1,;,5,....,;,....}
Then A = AU D(4).

(c)Z =7 U D(Z).

~ Z is closed.

(d)Q=QuD(@.
=QUR=R.
~ Qis not closed.

Example 2. In R x R with usual metric.
QxQ=(Q@xQuDQxQ).
= (@xQ U (RxR).
=RxR

~ Q X Qis not closed.

SOLVED PROBLEM

Problem 1. Prove that for any subset 4 of a metric space, d(4) = d(4)
where d(A) is the diameter of A.

Solution. We have A C A.

Sd(A) <dA) .. (1)



Now, let € > 0 be given. We claim that d(4) < d(A) + .

Letx,y € A.
1 1
~ B (x,ze) NA+#dandB (y,ze) NA+#® (bycor.?2)
Letx; € B (x,%e) NAandx, €B (y,%e) N A.
~ X, €EB (x,%e) and x, € B (y,%e).
ad(x,xg) < %e and d(y, x;) < %8. w(2)
Also,x; € Aand x, € A = d(x1,x,) < d(4). .. (3)
Now, d(x,y) < d(x,x1) + d(x1,x5) + d(y, x5).
<ze+d(4)+ze  (by(2)and (3))
=d(A) + «.
Thus d(x,y) < d(A4) + ¢.
~Lub.{d(x,y)|x,y € A} < d(A) + «.
Now, since ¢ is arbitrary, we have d(4) < d(4). ... (4)

By (1) and (4), we get d(4) = d(A).

4.8 DENSE SETS

Definition. A subset A of a metric space M is said to be dense in M
or everywhere dense if A = M.

Definition. A metric space M is said to be separable if there exists a
countable dense subset in M.

Example 1. Let M be a metric space. Trivially, M is dense in M.
Hence any countable metric space is separable.

Example 2. In R with usual metric Q is dense in R since Q = R.
Further Q is countable.

Hence R is separable.

Example 3. Let M be a discrete metric space.

LetAc Mand A # M.

Since A is closed, A = A.
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~ A is not dense.
NOTES Hence any uncountable discrete metric space is not separable.

Example 4. In R X R with usual metric Q X Q is a dense set, since
QxQ=RxR

Also Q is countable and hence Q X Q is countable.
~ R X R is separable.

Theorem 18. Let M be a metric space and A € M. Then the following
are equivalent.

(i) Ais densein M.

(ii) The only open set disjoint from A4 is M.

(iii) The only open set disjoint from A is .

(iv) A intersections every non-empty open-set.
(v) A intersections every open ball.

Proof.
D=(ii).
Suppose A is dense in M.
Then A = M.
Now, let F € M be any closed set containing A.
Since A is the smallest closed set containing A, we have ACF.
Hence M € F. (by (1)).
~M=F.
=~ The only closed set which contains 4 is M.
(ii)=(iii). Suppose (iii) is not true.
Then there exists a non-empty open set B suchthat BN A = .
~ B€isaclosed setand B¢ 2 A.
Further, since B # ® we have B¢ # M which is a contradiction to (ii).
Hence (ii)= (iii).
Obviously (iii)=(iv).

(iv)=(v), since every open ball B(x, r) intersect A.
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Then by corollary (2) of theorem 16, x € A.
~MCA.

But trivially A € M.

~A=M.

~ Ais densein M.

SOLVED PROBLEM

Problem 1. Give an example of a set E such that both E and E€ are
dense in R.

Solution. Let E = Q.

Since any open ball B(x,r) = (x — r,x + r) contains both irrational Q
and Q°.

Hence Q and Q¢ are dense in R. (by theorem 17)

CHECK YOUR PROGRESS

=

Show that [1,2] U [3,4] is open in R.

When did the set of interior point of A is equal to the set
A?

Is {0} is open or not?

Show that the set of irrational numbers is not open in R.
Show that every subset of a discrete metric space is closed.
Show that Z has no limit point.

N

oUW

4.9 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS

1. LetM = RandM; = [1,2] U [3,4]. Let4; = [1,2]. Then
A =1[12] = G,g) N M;. Therefore, (1,2) is open in M;.
Similarly [3,4] is open in M;.

2. Inadiscrete metric space M, Int A = A for any subset A of M.

3. In R with usual metric the set {0} is not an open set since, any
open ball with center 0 is not contained in {0}.

4. Proofis similar to that of example 7.

5. Let (M, d) be a discrete metric space. Let A S M. Since every
subset of a discrete metric space is open A€ is open.
Therefore, A is closed.

6. Letx isan integer, then B (x, %) = (x — %, x + %) does not

contain any integer other that x. Hence x is not a limit point of
Z.1f x is not an integer, let n be the integer which is closest to
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x.Chooser suchthat0 < r < |x —n|.Then B(x,r) = (x —r,x + 1)
contains no integer. Hence x is not a limit point of Z. Since x is
arbitrary Z has no limit point. Therefore, D(Z) = ®.

4.10 SUMMARY

1. Let (M,d) be a metric space. Let M; be a non-empty
subset of M. Then M; is also a metric space with the same metric d.
we say that (M, d) is a subspace of (M, d).

2. Let(M,d) be ametric space. Let A © M. Let x € A. Then
x is said to be an interior of A if there exists a positive real number r
such that B(x,r) € A.

3.  The set of all interior points of A is called the interior of
A and it is denoted by Int A.

4. A is open iff A=Int A. In particular Int ® = & and
Int M = M.

5. Let (M, d) be a metric space. Let A be a subet of M. Then
A is said to be open in M if for every x € A there exists a positive real
number r such that B(x,r) C A.

6. In any metric space (M, d) each open ball is an open set.

7.  In any metric space the union of any family of open sets
is open.

8. In any metric space the intersection of a finite number of
open sets is open.

9. Prove that any open subset of R can be expressed as the
union of a countable number of mutually disjoint open intervals.

10. In any metric space every closed ball is a closed set.

11. Inany metric space M, (i) @ is open, (ii) M is open.

12. In any metric space M, (i) ® is closed, (ii) M is closed.

13. In any metric space arbitrary intersection of closed sets
is closed.

4.11 KEYWORDS

1. Subspaces: Let (M, d ) be a metric space. Let M; be a non-empty
subset of M. Then M, is also a metric space with the same metric d.
we say that (M, d) is a subspace of (M, d).

2. Interior: Let (M,d) be a metric space. Let A € M. Let x € A.
Then x is said to be an interior of A if there exists a positive real
number r such that B(x,r) € A.

3. Int A: The set of all interior points of A is called the interior of
A and it is denoted by Int A.

4. Open: Let (M, d) be a metric space. Let A be a subet of M. Then
A is said to be open in M if for every x € A there exists a positive real
number r such that B(x,r) € A.



10.

11.

Equivalent: Let d and p be the two metrics on M. Then the metrics
d and p are said to be equivalent if the open sets of (M, p) are the
open sets of (M, d) and conversely.

Closed: Let (M, d) be a metric space. Let A € M. Then A4 is said to
be closed in M if the complement of A is open in M.

Closed ball or closed sphere: Let (M,d) be a metric space. Let
a € M. Let r be any positive real number. Then the closed ball or
the closed sphere with center a and radius r, denoted by By[a,r],
is defined by Bgla,r] = {x € M|d(a, x) < r}. When the metric d
under consideration is clear we write B[a, r] instead of B,[a, r].
Closure: Let A be a subset of metric space (M, d). The closure of 4,
denoted by A is defined to be the intersection of all closed sets
which contain A.

Limit: Let (M, d) be a metric space. Let A € M. Let x € M. Then x
is called a limit point or a cluster point or an accumulation point
of A if every open ball with center x contains at least one point of
A different from x.

Derived set: The set of all limit points of A is called the derived set
of A and is denoted by D (A).

Dense: A subset A of a metric space M is said to be dense in M or
everywhere dense if A = M.

4.12 SELF ASSESSMENT QUESTIONS AND
EXERCISES
1. Given an example of a metric space M and a non-empty proper

o © N

10.

subspace M;of M such that every open set in M; is also an open
setin M.

Determine the interior of Z which is the subsets of R.

Prove that any finite subset of a metric space is closed.

Given an example to show that in a metric space closure of an
open ball B(x,r) need not be equal to the corresponding closed
ball B[x, r].

Prove that the set of all limit points of a subset of a metric space is
closed.

Prove that any open ball is a non-empty open set.

Prove that R™ with usual metric is separable.

With usual metric show that Q is dense in R.

Prove that in a discrete metric space every set is both open and
closed.

Show that a set which is not closed is open.
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UNIT-5 COMPLETE METRIC SPACES

Structure

5.0 Introduction

5.1 Objectives

5.2 Completeness

5.3. Baire’s Category theorem

5.4 Answer to Check Your Progress Questions
5.5 Summary

5.6 Key Words

5.7 Self Assessment Questions and Exercises

5.8 Further Readings

5.0 INTRODUCTION

The reader is familiar with the concept of convergent
sequences and Cauchy sequences in R. In this chapter we generalize
these concept to sequence in any metric space.

5.1 OBJECTIVE

After going through this unit, you will be able to:

¢ Understand what is meant by complete.
e Determine converges of a sequence and Cauchy sequence.
e Discuss Baire’s Category theorem.

5.2 COMPLETENESS

Definition. Let (M, d) be a metric space. Let (x,) = xq, X3, ..., Xy, ... b€
a sequence of point in M. Let x € M. We say (x,,) is converges to x if
given € > 0 there exists a positive integer n, such that d(x,,x) < ¢
such that for all n = n,. Also x is called a limit of (x,,).

If (x,,) converges to x we write lim,,_,, X, = x or (x,) — x.

Note 1. (x,) — x iff for each open ball B(x, &) with center x there
exists a positive integer n, such that x,, € B(x, €) for all n > n,,.
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Thus the open ball B(x, €) contains all but a finite number of terms of
the sequence.

Note 2. (x,,) — x iff the sequence of real numbers (d(x,, x)) — 0.
Theorem 1. For a convergence sequence (x,,) the limit is unique.
Proof. Suppose (x,,) = x and (x,,) = y.

Let € > 0 be given. Then there exist positive integersn, and n,

such that d(x,, x) < %e foralln > n; and d(x,,y) < %e foralln > n,.

Let m be a positive integer such that m > ny, n,.
Then d(x,y) < d(x, x,,) + d(xp, ¥).
<te+ze=e

~d(x,y) <e.

Since € > 0 is arbitrary d(x,y) = 0.

~d(x,y) =0.

X =Y.

Note. In view of the above theorem if (x,) —» x then x is called the
limit of the sequence (x,,).

The connection between the limit of a sequence and limit of a
sequence and limit point of a set is given in the following theorem.

Theorem 2. Let M be a metric space and A € M. Then

(i) x € A iff there exists a sequence (x,,) of distinct points of A such
that (x,,) - x.

(i) x is a limit point of A iff there exists a sequence (x,) of distinct
points in A such that (x,,) - x.

Proof. Let x € A.
Thenx € AU D(A). (by theorem 16 in unit 4)
~ x €Aandx € D(4)

If x € A, then the constant sequence x, x, ... is a sequence in A
converging to x.



If x € D(A) then the open ball B(x, %) contains infinite number of

points of A. (by theorem 15 of unit 4)
= We can choose x, € B(x, %) N A such that x, # x, %5, ...., Xp_1
for each n.

~ (x,) be a sequence of distinct points inA.
Also d(x,,x) < %for all n.

lim,,_, d(x,,x) = 0.
“ (X)) o x,

Conversely, suppose there exists a sequence (x,,) in A such that
(xn) = x.

Then for any r > 0 there exists a positive integer n, such that
d(xp,,x) < rforalln = n,.

~Bx,r)NA+ &
“xEA. (by corollary 2 of theorem 16 in unit 4)

Further if (x,) is a sequence of distinct points, B(x,7) N 4 is
infinite.

. x € D(A).
~ x is a limit point of A.

Definition. Let (M, d) be a metric space. Let (x,) be a sequence of points
in M. (x,,) is said to be a Cauchy sequence in M if given £ > 0 there exists
a positive integer n, such that d(x,,, x,,) < € forallm,n = n,

Theorem 3. Let (M,d) be a metric space. Then any convergence
sequence in M is a Cauchy sequence.

Proof. Let (x,,) be a convergent sequence in M converging to x € M.

Let € > 0 be given.

Then there exists a positive integer n, such that d(x,,x) < %s

foralln > n,
d(xpm, xn) < d(Xp, x) + d(x, x,,).

1 1
<jetse=e forallm,n = n,
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Thus d(x,, x,,) < € forallm,n > n,
=~ (x,) is a Cauchy sequence.
Note. The converse of the above theorem is not true.

For example, consider the metric space (0,1] with usual
metric.

(%) is a Cauchy sequence in (0,1].
But this sequence does not converge to any point.

Definition. A metric space M is said to be complete if every Cauchy
sequence in M converges to a pointin M.

Examplel. R with usual metric is complete. This is a fundamental
fact of elementary analysis and a proof of this fact is given is unit 13

Note. The metric space (0,1] with usual metric is not complete (refer
note given above)

Example 2. C with usual metric is complete.

Proof. Let (z,) be a Cauchy sequence in C.
Let z, = x, + iy, where x,,, y, € R.
We claim that (x,,) and (y,,) are Cauchy sequence in R.
Let € > 0 be given.

Since (z,) is a Cauchy sequence, there exists a positive
integer n, such that |z,, — z,,| < € for all n,m = n,.

Now, |xn - xml < |Zn - Zml and |yn - yml < |Zn - Zml-

Hence |x, — x,,| < efor all n,m =n, and |y, — y,,,| < € for
alln,m = n,.

~ (x,) and (y,,) are Cauchy sequence in R.

Since R is complete, there exists x,y € R such that (x,,) - x
and (y) = .

Let z = x + iy. We claim that (z,,) — z.
We have |z, — z| = [(x, + iy,) — (x + iy)]

=0 —2) + iy — ¥)I



Now, let € > 0 be given.

Since (x,) = x and (y,) = y there exist positive integer n,
and n, such that |x,, — x| < %e foralln > n, and |y, —y| < %e for all

n =ns.
Let n; = max{n,,n,}.
From (1) we get |z, — z| < %s + 1;5 = ¢ foralln > ns.
~ (zy) = 2.
=~ Cis complete.
Example 3. Any discrete metric space is complete.
Proof. Let (M, d) be a discrete metric space.

Let (x,,) be a Cauchy sequence in M.

Then there exists a positive integer n, such that d(x,, x,,) < %

for all n,m = n,.

Since d is the discrete metric distance between any two points
is either O or 1.

& d(xy, xy,) = 0foralln,m > n,.
S Xy = Xp, = X (SAY) N = Ny,
&~ d(x,,x) = 0foralln = n,.
~ (x,) — x. Hence M is complete.
Example 4. R™ with usual metric is complete.
Proof. Let (xp) = (xpl, ....,xpn). Let € > 0 be given.
Then there exists a positive integer n, such that d(xp,xq) <e¢

forall p,q = n,.

1
[Zﬁ:l(xz)k - qu)z] f2 < g forall p,q = n,.

=1 (xpy, — qu)z < g% forallp, q = n,.
~ Foreachk = 1,2,...n we have

|xpk — qu| < gforallp,q = n,.
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(xpk) is a Cauchy sequence in R foreach k = 1,2, ..., n.
NOTES Since R is complete, there exists ¥, € R such that (x,, ) = yi.
Lety = (y1,¥2, -, ¥n). We claim that (x,) - y.

Since (xp,) = yi there exists a positive integer m; such that

%y, — vie| < \/iﬁfor allp = my.
Let my = max{m,, ..., m,}.
Then d(x,,y) = [Z’,}:l(xpk - qu)z]l/z
<|[n (\/%)2]1/2 forall p = m,.
=¢ forallp = m,.
Thus d(x,,y) <& forallp >ms,.
(xp) — y. Hence R" is complete.

Example 5. [, is complete.

Proof. Let (xp) be a Cauchy sequence in [,.

Let (xp) = (xpl, .,xpn).

Let € > 0 be given. Then there exists a positive integer n,
such that d(xp, xq) < ¢forall p,q = n,.

1
(i.e.) [Z;‘{’zl(xpn — an)z] /2 < gforall p,q = n,.

w Xoea(xp, — an)z <e&*forallp,g=ny (1)
Foreachn = 1,2, ..... we have

|xpn — an| < eforallp,q = n,.

(xpn) is a Cauchy sequence in R for each n.

Since R is complete, there exists y,, € R such that
(Xp,) 2 Yo e (2)

Lety = (¥1, Y2, o Yoy v )-

Self-Instructional material




We claim that y € [, and (xp) - .
For any fixed positive integer m, we have

Let € > 0 be given. Then there exists a positive integer ny such
that d(x,, x,) < € forall p,q = n,.

m o (xp, — an)z < e&%forallp,q =ny.  (using (1))
Fixing q and allowing p — oo in this finite sum we get
m (- an)z <e&?forallq =n,  (using(2))

Since this is true for every positive integer m

Yo (o — an)z <e?forallq =ng. ... 3)
o 1 [ee]
Now, [E71 [nl?172 = [£72-1 [Yn — X, + Xq,

o0 1 ® 1
< (2o v = xg, 17 ] 72 + [ Xy 1xg, 17 ] 72 (by
Minkowski’s inequality)

1
<e+[Xr, x4, 1> | /2 forallg = ny.  (using (3))

1
Since x, € [, we have [Z;‘f’zl %4, 1% ] /2 converges.

0 1
2 [29 [ynl? 172 converges.

Ly E L.

Also (3) gives d(y, xp) < ¢ forallp = n,.

S (xp) d y
Hence [, is complete.
Note. A subspace of a complete metric space need not be complete.

For example R with usual metric is complete. But the
subspace (0,1] is not complete. (refer example 1).

In the next theorem we give a necessary and sufficient
condition for a subspace of a complete metric space to be complete.
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Theorem 4. A subset A of a complete metric space M is complete iff A
is closed.

Proof. Suppose A is complete.

To prove that A is closed, we shall prove that A contains all its
limit points.

Let x be a limit point of A.

Then by theorem 2, there exists a sequence (x,) in A such
that (x,,) — x.

Since A is complete x € A.
~ A contains all its limit points.
Hence A is closed.

Conversely, let A be a closed subset of M.
Let (x,) be a Cauchy sequence in A.

Then (x,) be a Cauchy sequence in M also and since M is
complete there exists x € M such that (x,) - x. Thus (x,) is a
sequence in A converging to x.

~x € A. (by theorem 2)
Now, since A is closed 4 = A.
~x € A.

Thus every Cauchy sequence (x,) in A converges to a point in

~ Ais complete.

Note 1. [0,1] with usual metric is complete since it is a closed subset
of the complete metric space R.

Note 2. Consider Q. Since Q = R, Q is not a closed subset of R.
Hence Q is not complete.

Solved problems

Problem 1. Let 4, B be subsets of R. Prove that A X B = A X B.
Solution. Let (x,y) € A X B.

. There exists a sequence ((xp,y,)) € AXB such that
((xn, yn)) - (x,). (by theorem 2)



= (xn) = (x) and (y) = ().
Also, (x,,) is a sequence in A and (y,,) is a sequence in B.
~x€Aandy € B. (by theorem 2)

~ (x,y) € AXB.

~AXBCAxB. ..(Q1)
Now, let (x,y) € A x B.
~x€Aandy € B.

~ There exists a sequence (x,) in A and a sequence (y,) in
B such that (x,,) = (x) and (y,,) = ().

« ((xn, ¥)) is a sequence in A x B which converges to (x, ).
~ (x,y) € AXB.
~AXBCAXB. ... (2)
~ By (1)and (2) weget A X B = A X B.
Theorem 5. (Cantor’s Intersection Theorem)

Let M be a metric space. M is complete iff for every sequence (F,) of
non-empty closed subsets of M such that

FF2F,2:-2F, 2 -and (d(F,)) = 0. N;~ E, is nonempty.
Proof. Let M be a complete metric space.

Let (F,) be asequence of closed subsets of M such that

FIF2F22F 2 ..(1

And (d(F,)) — 0. .(2)

We claim that N, -, F, is nonempty.

For each positive integer n, choose a point x,, € F,.

By (1), X5, Xn41, Xn4o, - all lie in E,.

(i.e.) x,, € F, forallm > n. ..(3)
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Since d((F,)) — 0, given € > 0, there exists a positive integer
ny, such that d(F,)) < e foralln = n,.

In particular, d(F,) < ¢. e(4)
~d(x,y) <eforallx,y € E,.

Now, x,, € F, forallm =n,. (by (3))
SN 2 Ny = Xy, X € By

d(xm, xn) <& (by (4))

~ (x,,) is a Cauchy sequence in M.

Since M is complete there exists a point x € M such that
() = x.

We claim that x € N,,-1 F,.

Now, for any positive integer n, x,,, X, 41, Xn42, --- IS @ Sequence
in F, and this sequence converges to x.

. x € E,. (bytheorem 2)

But F, is closed and hence E, = E,.

X € Ry

X € Np=q Fy.

Hence N;—; F, # &.

To prove the converse let, (x,,) be any Cauchy sequence in M.
let F; = {x1, %3, ..., Xp, ... }.

Fz = {xZ,X3, ...,xn, }

E, = {x, Xp41y oo }-
Clearly F; 2 F, 2 -2 F, 2 -

~ FF2F,2-2E,

(9]

=~ (F;) is a decreasing sequence of closed sets.



Now, since (x,) is a Cauchy sequence, given € > 0 there exists
a positive integer ny, such that d(x,,, x,) < € for alln,m = n,.

=~ For any integer n > n,, the distance between any two points
of F, is less than ¢.

~d(E) <e for all n > n,,.

But d(FE,) = d(E,).

~d(E)<e foralln>n, ... (5)

- (d(R) - .

Hence N$-, F, # ®.

Let x € N5, F,. Then x and x,, € E,.
A 0) < d(F).

ad(xp,x) <e foralln > ny. (by (5))
“ () = x.

= M is complete.

Note 1. In the above theorem N;_; F, contains exactly one point.
For, suppose that N~ F, contains two distinct points x and y.
Then d(E,) = d(x,y) for all n.
=~ (d(F,)) does not tend to zero which is a contradiction.
~ Np=1 F, contains exactly one point.

Note 2. In the above theorem N;_, F,, may be empty if each F, is not
closed.

For example, consider F, = (0, %) in R.

Clearly Fy 2F; 2+ 2F 2 and (d(Fn)) = (l) -0 as

n
n — oo,

But N%., F, = ®.

Note 3. In the above theorem N;_, F, may be empty if the hypothesis
(d(E,)) — 0is omitted.

For example, consider F,, = [n, ) in R.
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Clearly (F,) is a sequence of closed sets and F; 2 F, 2 -+ 2
Fy2-.

Also N;_, F, = &.

Here, d(E,) = for all n and hence the hypothesis
(d(E,)) — 0is not true.

5.3 BAIRE’S CATEGORY THEOREM

In this section we prove a fundamental property of complete
metric space called Baire’s Category theorem.

Definition. A subset A of a metric space M is said to be nowhere
dense in M if Int A = ®.

Definition. A subset A of a metric space M is said to be of first
category in M if A can be expressed as a countable union of nowhere
dense sets.

A set which is not of first category is of second category.

Note. If A is of first category then A = Uj_, E,, where E,, is nowhere
dense subsets in M.

Example 1. In R with usual metric 4 = {1,

N |-
W

1 .
pea T .... } is nowhere

)

dense.

1

For, A= AUD(A) = {0,1,5,7, ...~ ...}

N |-

Clearly, Int A = ®.

Example 2. In any discrete metric space M, any non-empty subset A
is not nowhere dense.

For, in a discrete metric space every subset is both open and
closed.

s~ A=IntA=IntA=A.
~Int A+ .
~ A is not nowhere dense.

Example 3. In R with usual metric any finite subset A is nowhere
dense. For, let A be any finite subset of R.

Then A is closed and hence A = A.

Also since A is finite, no point of A is an interior point of A.



~IntA=IntA = .
~ A is nowhere dense.

Note. If A and B are sets of first category in a metric space M then
A U B is also of first category.

For, since A and B are of first category in M we have
A = Uy~ E, and B = U,-; H, where E,, and H,, are nowhere dense
subsets in M.

~ A U B is a countable union of nowhere dense subsets of M.
(refer theorem 7 of unit 1)

Hence A U B is of first category.

We now give equivalent characterizations for nowhere dense
sets.

Theorem 6. Let M be a metric space and A € M. Then the following
are equivalent.

() A is nowhere dense in M.

(i) A does not contain any non-empty open set.

(iii) Each non-empty open set has a non-empty open subset
disjoint from A.

(iv)  Each non-empty open set has a non-empty open subset
disjoint from A.

(v)  Each non-empty open set contains an open sphere disjoint
from A.
Proof is left as an exercise to the reader.

Theorem 7. (Baire’s Category Theorem)
Any complete metric space is of second category.
Proof.
Let M be a complete metric space.
We claim that M is not of first category.
Let (4,) be a sequence of nowhere dense sets in M.
We claim that Uy, 4, # M.

Since M is open and A; is nowhere dense, there exists an
open ball say B; of radius less that 1 such that B, is disjoint from A;.
(refer theorem 3.6)
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: A
Let F; denote the concentric closed ball whose radius is >

times that of B;.

Now Int F; is open and A, is nowhere dense.

~ Int F; contains an open ball B, of radius less than % such that

B, is disjoint from A,.

: A
Let F, be the concentric closed ball whose radius is > times

that of B,. Now Int F, is open and A, is nowhere dense.

~ Int F, contains an open ball B; of radius less than % such that

B, is disjoint from A;.

Let F; denote the concentric closed ball whose radius is %

times that of Bs.

Proceeding like this we get a sequence of non-empty closed
balls exists a point x inM such that

FL2F, 2 2F 2 andd(F,) <.

Hence (d(F,)) = 0 asn — oo.

Since M is complete, by Cantor’s intersection theorem, there
exists a pointx in M such that x € N;_; F,.

Also, each F, is disjoint from 4,,.

Hence x ¢ A, for all n.

ox @ Uiy An.

% Up=1 4, # M.Hence M is of second category.
Corollary. R is of second category.

Proof. We know that R is a complete metric space. Hence R is of
second category.

Note. The converse of the above theorem is not true.

(i.e.) A metric space which is of second category need not be
complete.

For example, consider M = R — Q, the space of irrational
numbers.



We know that Q is of first category.

Suppose M is of first category. Then M U Q = R is also of first
category which is contradiction.

Also M is not a closed subspace of R and hence M is not
complete.

SOLVED PROBLEMS

Problem 1. Prove that any nonempty open interval (a,b) in R is of
second category.

Solution. Let (a, b) be a non-empty open interval in R.
Suppose (a, b) is of first category.
Now, [a,b] = (a,b) U {a} U {b}.
=~ [a, b] is of first category.

But [a, b] is a complete metric space and hence is of second
category which is a contradiction.

~ (a, b) is of second category.

Problem 2. Prove that a closed set A in a metric space M is nowhere
dense iff A€ is everywhere dense.

Solution. Let A be a closed set in M.
~A=A. ... (1)
Suppose A is nowhere dense in M.
~Int A= .
~IntA=o. (by (1)) ... (2)
Now we claim that A = M.
Obviously, A € M. ... 3)
Now, let x € M. Let G be any open set such that x € G.
Since Int A = &, we have G ¢ A.
~GNAC # D
~x € AC.

=~ A¢ is everywhere dense in M.
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Conversely let A be everywhere dense in M.
A¢ =M.

We claim that Int A = ®.
Let G be any non-empty open set in M.
Since A = M, we have G N A€ # &.
~ G ¢ A
=~ The only open set which is contained in 4 is the empty set.
~IntA= .
~Int A= ®. (by(1))

~ A is nowhere dense in M.

CHECK YOUR PROGRESS

1. If Aand B are closed subset of R prove that A X B is a closed
subsetin R X R.

2. Consider R with usual metric. Show that in any singleton set {x} is
nowhere dense.

5.4 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS
1. Since 4 and B are closed sets we have A = A and B = B.

Now,Ax B=AXB = AXB (by problem 1). Therefore,

A X B is aclosed set.

2. Consider R with usual metric. Any singleton set {x} is
nowhere dense. Therefore, any countable subset of R begin a
countable union of singleton sets is of first category. In particular Q is
of first category. (refer theorem 3)

5.5 SUMMARY

1. Let (M,d) be a metric space. Let (x,) = x4, X5, ..., X,, ... be a
sequence of point in M. Let x € M. We say (x,,) is converges to x if
given € > 0 there exists a positive integer n, such that d(x,,x) < &
such that for all n > n,. Also x is called a limit of (x,,).

2. (x,) — x iff for each open ball B(x, €) with center x there
exists a positive integer n, such that x,, € B(x, €) for all n > n,,.
3. (x,) — x iff the sequence of real numbers (d(x,, x)) — 0.
4, For a convergence sequence (x,,) the limit is unique.




5. Let (M, d) be a metric space. Then any convergence sequence in
M is a Cauchy sequence.
6. A subset A of a complete metric space M is complete iff 4 is

closed.

7. Any complete metric space is of second category.
5.6 KEYWORDS

6. Converges: Let (M,d) be a metric space. Let (x,) =
X1, Xz, .., Xn, ... be a sequence of pointin M. Let x € M. We say
(x,) is converges to x if given € > 0 there exists a positive
integer n, such that d(x,, x) < & such that for all n = n,,.

7. Cauchy sequence: Let (M,d) be a metric space. Let (x,) be a
sequence of points in M. (x,,) is said to be a Cauchy sequence
in M if given € > 0 there exists a positive integer n, such that
d(xy, x,) < eforallm,n = n,

8. Complete: A metric space M is said to be complete if every
Cauchy sequence in M converges to a point in M.

9. Nowhere dense: A subset A of a metric space M is said to be
nowhere dense in M if Int A = ®.

10. First category: A subset A of a metric space M is said to be of
first category in M if A can be expressed as a countable union
of nowhere dense sets.

11.Second category: A set which is not of first category is of
second category.

5.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1. Show that R with usual metric is complete.

2. Show that [0,1] with usual metric is complete.

3. Prove that any discrete metric space is complete.

4. Show that R is of second category.

5. Prove that union of a countable number of sets which are of
first category is again of first category.

6. Prove that R™ with each of the following metric is complete.
di(x,y) = max{|x; — y;[ | i = 1,2, ..n}.

b. dy(x,y) = Xitlx — yil.

7. Prove that [,, is a complete metric space for any p > 1.
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6.0 INTRODUCTION

In unit 5, we discussed the concept of convergence of a
sequence in any metric space. The definition of continuity for real
valued functions depends on the usual metric of the real line. Hence
the concept of continuity can be extended for functions defined from
one metric space to another in a natural way.

6.1 OBJECTIVES

After going through this unit, you will be able to:

¢ Understand what is meant by continuous.
e Determine homeomorphism.
e Discuss uniform continuity.

6.2 CONTINUITY

Definition. Let (M, d;) and (M,, d,) be metric spaces. Let f: M; - M,
be a function. Let a; € M; and | € M,. The function f is said to have limit
as x — a if given € > 0 there exists § > 0 such that 0 < d;(x,a) <§ =
d,(f(x),1) < e. We writelim,_, f(x) =L
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Definition. Let (M;,d;) and (M,,d,) be two metric spaces. Let
a € M;. A function f: M; = M, is said to be continuous at a if given
€ > 0, there exists § > 0 such that d;(x,a) < § = d,(f(x),f(a)) <
E.

f is said to be continuous if it is continuous at every point of Mj;.
Note 1. f is continuous at a iff lim,_, f(x) = f(a).

Note 2. The continuous d;(x,a) < § = d,(f(x), f(a)) < € can be
rewritten as

() x € B(a,6) = f(x) € B(f(a),¢) or
(i) f(B(a,8)) < B(f(a), &).

Examplel. Let (M;,d,) and (M;,d,) be two metric spaces. Then any
constant function f: M; — M, is continuous.

Proof. Let f:M; — M, be given by f(x) = a, where a € M, is a fixed
element.

Letx € M, and € > 0 be given.

Then forany § > 0, f(B(x,6)) = {a} € B(a, ¢).
-~ f is continuous at x.

Since x € M, is arbitrary, f is continuous.

Example 2. Let (M;, d,) be a discrete metric space and let (M,, d,) be
any metric space. Then any function f: M; = M, is continuous.

i.e. Any function whose domain is a discrete metric space is
continuous.

Proof. Let x € M; and € > 0 be given.
Since M, is discrete for any 6 < 1, B(x,6) = {x}.

=~ f(B(x,8)) = {f(x)} € B(f(x),€)
~ f is continuous at x.

We now give a characterization for continuity of a function at a point
in terms of sequences converging to that point.

Theorem 1. Let (M;,d;) and (M,,d,) be two metric spaces. Let
a € M;. A function f:M; - M, is continuous at a iff (x,)—a

= (f(xn) = f(@).



Proof. Suppose f is continuous at a. Let (x;,) be a sequence in M,
such that (x,,) — a.

We claim that (f(xn)) - f(a).

Let € > 0 be given. By the definition of continuity, there exists § >
Osuch thatd;(x,a) < § = d,(f(x), f(a)) < e. (1)

Since (x,) = a, there exists a positive integer n, such that
d,(x,,a) < § foralln > n,.

« dy(f (%), f(@)) < e foralln = ng (by (1))
# (fGen)) = f ().

Conversely, suppose (x,) > @ = (f(xp)) = f(@).

We claim that f is continuous at a.

Suppose f is not continuous at a.

Then there exists an € > 0 such that for all § > 0, f(B (a,—)) o
B(f(a), €).

In particular f (B (a, %)) ¢ B(f(a),¢)
Choose x,, such that x,, € B (a, %) and f(x,) € B(f(a),¢).

wdy(xy,a) < % and d, (f (xn), f (@) = .

% (x,) = a and (f(x,)) does not converges to f(a) which is a
contradiction to the hypothesis.

= f is continuous at a.

Corollary. A function f:M; - M, is continuous iff (x,)—x

= (f () = ().
We now characterize continuous mapping in terms of open sets.

Theorem 2. Let (M;,d;) and (M,,d,) be two metric spaces.
f:M; > M, is continuous iff f~1(G) is open in M; whenever G is
open in M,.

(i.e.) f is continuous iff inverse image of every open set is open.

Proof. Suppose f is continuous.
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Let G be an open setin M,.

We claim that f~1(G) is open in M.
If f~1(G) is an empty, then it is open.
Let f71(G) # .

Let x € f~1(G). Hence f(x) € G.

Since G is open, there exists an open ball B(f(x),&) such that

B(f(x),e) € G. ...()

Now, by definition of continuity, there exists an open ball B(x, )
such that f(B(x,6)) € B(f(x), ).

~ f(B(x,8)) €G. (By (D).
-~ B(x,8) € f~1(G).
Since x € f~1(G) is arbitrary, f ~1(G) is open.

Conversely, suppose f~1(G) is open in M; whenever G is open in M,.
We claim that f is continuous.

Letx € M;.

Now, B(f (x), €) is an open set in M,.

o fTYB(f(x),€))is openin M; and x € f~1(B(f(x),¢)).

« There exists § > 0 such that B(x,8) < f~1(B(f(x), €)).
~ f(B(x,8)) € B(f(x), ).

-~ f is continuous at x.

Since x € M, is arbitrary f is continuous.

Note 1. If f: M; = M, is continuous and G is open in M, then it is not
necessary that f(G) is open in M,

(i.e.) Under a continuous map the image of an open set need not be
an open set.

For example let M; = R with discrete metric and let M, = R with
usual metric.

Let f: M; - M, be defined by f(x) = x.

Since M, is discrete every subset of M, is open.



Hence for any open subset G of M,, f 71(G) is open in M;.
=~ f is continuous.
Now, A = {x} is open in M;.

But f(A) = {x}is not open in M,.

Note 2. In the above example f is a continuous bijection whereas
f~1:M; —» M, is not continuous.

For, {x} is an open set in M.

(F"H7({x}) = {x} which is not open in M,.

=~ f~1is not continuous.

Thus if f is a continuous bijection, f ~! need not be continuous.

We now give yet another characterization of continuous functions in
terms of closed sets.

Theorem 3. Let (M;,d;) and (M,,d,) be two metric spaces. A
function f:M; - M, is continuous iff f~1(F) is closed in M,
whenever F is open in M,.

Proof. Suppose f: M; — M, is continuous.
Let F € M, be an closed in M,.

~ F¢is openin M,.

o f7Y(F¢)is openin M;.

But f'(F°) = [fH(F) ]°.

fY(F) is closed in M;.

Conversely, suppose f~1(F) is closed in M; whenever F is closed in
M,. We claim that f is continuous.

Let G is an open setin M,.

~ G€1is closed in M,.

o f71(G) is closed in M,

~ [f7HGE)]¢ is closed in M;.

~ f7Y(G) is open in M,
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=~ f is continuous.

We give one more characterization of continuous function in terms
of closure of a set.

Theorem 4. Let (M;,d;) and (M,,d;) be two metric spaces. Then
f:M; —> M, is continuous iff f(4) € f(A) forall A € M;.

Proof. Suppose f is continuous.

LetA € M;. Then f(A) € M,.

Since f is continuous, f ~*(f(A4) ) is closed in M;.
Also, f~Y(f(A)) 2 A (since f(4) 2 f(4)).
But A is the smallest closed set containing A.

S fTUF(A)) 2 A

~fA)cf).

Conversely, let f(A) € f(A) forall A € M;.

To prove that f continuous, we shall show that if F is a closed set in
M,, then f~1(F) is closed in M;.

By hypothesis, f(f~(F)) € ff~*(F)

F.

N

=F (Since F is closed).

Thus f(f~1(F)) € F.

~ f-I(F) S F.

Also
fHE) S 7).

“ fUF) = I,

Hence f~1(F) is closed.

-~ f is continuous.



Solved problems

Probleml. Let f be a continuous real valued function defined on a
metric space M. Let A = {x € M|f(x) = 0}. Prove that A4 is closed.

Solution. A = {x € M|f(x) = 0}.
= {x € M|f(x) € [0,0)}.
= f71([0,%)).
Also, [0, ) is a closed subset of R.
Since f is continuous, f ([0, ©)) is closed in M.
~ A is closed.

Problem 2. Show that the function f: R — R defined by

0if x is irrational
1if x is rational

fe ={

is not continuous by each of the following methods.

() By the usual ¢, § method.

(ii) By exhibiting a sequence (x,) such that (x,) - x and
(f (x;,)) does not converge to f(x).

(iii) By exhibiting an open set G such that f~1(G) is not open.

(iv) By exhibiting closed subset F such that f~1(F) is not
closed.

(v) By exhibiting an subset 4 of R such that f(4) ¢ f(A).

Solution (i). To prove that f is not continuous at x we have to show
that there exists an & >0 such that for all § >0, f(B(x,8)) ¢

B(f (x), €).
Lete = %

For any 6 > 0,B(x,8) = (x — §,x + &) contains both rational and
irrational numbers.

If x is rational, choose y € B(x, §) such that y is rational.
Then |f(x) — f(y)| = 1. (by definition of f).
(ie) d(f(0),f ) = 1.

“f) € BUF(0),3)
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Thusy € B(x,8) and f(y) ¢ B(f(x),%)

Hence f is not continuous at x.

(i) Let x € R . Suppose x is rational. Then f(x) = 1. Let (x,,) be a
sequence of irrational numbers such that (x,) — x.

Then (f(x,)) = 0and f(x) = 1.
~ (f (x,)) does not converge to f(x).

Proofis similar if x is irrational.

(iii) LetG = G, g) Clearly G is open in R.
Now, f71(G) = {x € R|f(x) € G}.

~fresfwe )}
=Q.

But Q is not open in R.
Thus f~1(G) is not open in R.
=~ f is continuous.

(iv) Choose F = [, ]
Then, f~1(F) = Q which is not closed in R.
-~ f is not continuous.

(V) LetA = Q. Then A = R. (refer examplel)
~ f(4) = f(R) ={0,1}  (by definition of f).
Also, f(4) = f(Q) ={1}.
~ fA) = {1} = {1}.
= f(A) ¢ f(A).

= f is not continuous.

Problem 3. Let M;,M,,M; be metric spaces. If f:M; - M, and
g: M, = M5 are continuous functions, prove that go f: M; = M3 is
also continuous.

(i.e.) composition of two continuous functions is continuous.
Solution. Let G be open in M.

Since g is continuous, g~*(G) is open in M,.

Now, since f is continuous, f ~1(g~1(G) ) is open in M;.

(i.e) (g ° f)~1(G) is open in M;.



=~ g o f is continuous.

Problem 4. Let M be a metric space. Let f:M - R and g:M — R be
two continuous functions. Prove that f + g: M — R is continuous.

Solution. Let (x,,) be a sequence converging to x in M.

Since f and g are continuous functions, (f(x,)) = f(x) and ,

(9(xn)) = g(.

2 (f ) + g0x)) = F () + g(x).
(ie), ((f + ) = (fF +9) ()
» f + g is continuous.

Problem 5. Let f, g be continuous real valued functions on a metric
space M. Let A = {x|x € M and f(x) < g(x)}. Prove that A is open.

Solution. Since f and g are continuous real valued function on
M, f — g is also a continuous real valued function on M.

Now A ={x e M| f(x) < g(x)}.
={xeM|f(x) —gkx) <0}
={xeM|(f-g)(x) <0}

={x e M| (f — g)x € (=, 0)}

= (f = 9) (=0, 0)}.

Now, (—o0,0) is open in R, and f — g is continuous.
Hence (f — g)~*{(—, 0)}is open in M.

~ Aisopenin M.

Problem 6. If f: R —- R and g: R = R be two continuous functions on
R and if h: R? - R? is defined by h(x,y) = (f (x), g(y)) prove that h
is continuous on R?.

Solution. Let (x,,, y,) be sequence in R? converging to (x, y).
We claim that (h(x,, y,)) converges to h(x,y).

Since ((xn, yn)) = (x,¥) in R?, (x,) > x and (3,) - y in R.
Also f and g are continuous.

& (f(x) = f(x) and (g()) = g().
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a2 (fO), g90m) = (F), g)) .
o (RO y)) = h(x, ).
=~ h is continuous on R2.

Problem 7. Let (M, d) be a metric space. Let a € M. Show that the
function f: M — R defined by f(x) = d(x, a) is continuous.

Solution. Let x € M.

Let (x,) be a sequence in M such that (x,) — x.

We claim that (f (x,)) = f(x).

Let € > 0 be given.

Now, |f (xn) — f()| = [d(xn, @) — d(x, a)| < d(xy, x).

Since, (x,) — x, then there exists a positive integer n; such that
d(xp,x) < eforalln = n,.

~|f(x) — f(x)] < eforalln > n,.
w (f ) = f(0)
=~ f is continuous.

Problem 8. Let f be a function from R? onto R defined by f(x,y) = x
for all (x,y) € R?. Show that f is continuous in R?.

Solution. Let (x,y) € R?.

Let ((x,, ¥»)) be a sequence in R?converging to (x, y).
Then (x,,) - x and (y,) = y.

o (f G yn)) = () = x =f(x, ).

« (f Ceny)) = f 0, 9)

=~ f is continuous.

Problem 9. Define f:l, —» [, as follows. If s € [, is the sequence
S1,82,.... let f(s) be the sequence 0,s;,Sy,... Show that f is
continuous on [,.

Solution. Lety = (y4, V2, <o+, Y, - ) € L.

Let (x,) be a sequence in [, converging to y.



Letx, = (X, Xn,» s Xnpr ooe)-

Then (xn,) = Y1, (%n,) = V2 coon(Xny) = Vieroom

2 () = ((o, Xy Xy oo X )) = (0, Y1, Var ) Vier 2)) =
f).

# (fGa) = FO).

- f is continuous.

Problem 10. Let G be an open subset of R. Prove that the
lifxea,

characteristic function on G defined by )(G(x)z{o L.fnglS

continuous at every point of G.

Solution. Let x € G so that y;(x) = 1.

Let € > 0 be given.

Since G is open and x € G, we can find a § > 0 such that B(x, §) € G.
= x6(B(x,8)) € x6(G).

= {1}.

C B(1,¢).

Thus )(G(B(x, 8)) C B(ys(x), €).

~ X¢ is continuous at x.

Since x € G is arbitrary, y; is continuous on G.

6.3 HOMEOMORPHISM

Definition. Let (M;,d;) and (M,,d,) be metric spaces. A function
f:M; = M, is called a homeomorphism if

() f is 1-1 and onto.
(ii)  f is continuous.
(iii)  f~'is continuous.

M; and M, are said to be homeomorphic if there exists a
homeomorphism f: M; - M,.

Definition. A function f: M; — M, is said to be an open map if f(G) is
open in M, for every open set G in M;.
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(i.e.) f is an open map if the image of an open set in M, is an open set
in M.

f is called a closed map if f(F) is closed in M, for every closed set F
in M;.

Note 1. Let f:M; > M, be a 1-1 onto function. Then f~! is
continuous iff f is an open map.

For, f~1 is continuous iff for any open set G in M; (f~1)"1(G) is open
in M.

But (f 1) 71(6) = f(G).

~ f~1is continuous iff for every open set G in My, f(G) is open in M,.
~ f~1is continuous iff f is an open map.

Note 2. Similarly £~ is continuous iff f is a closed map.

Note 3. Let f: M; - M, be a 1-1 onto map. Then the following are
equivalent.

(i) f is homeomorphism.
(ii) f is continuous open map.
(iii) f is a continuous closed map.

Proof. (i) ©(ii) follows form Note 1 and the definition of
homeomorphism.

(i) &(iii) follows form Note 2 and the definition of homeomorphism.

Note 4. Let f: M; —» M, be a homeomorphism. G € M; is open in M;
iff f(G) is open in M.

For, since f is an open map G is open in M; = f(G) is open in M,.

Also since f is continuous, f(G) is open in M, = f~1(f(G)) =G is
open in M;.

~ Gisopenin M, iff f(G)isopeninM,. ... (D

Conversely, if f: M; — M, is a 1-1 onto map satisfying (1) then f is
homeomorphism.

Thus a homeomorphism f:M; - M, is simply a 1-1 onto map
between the points of the two spaces such that their open sets are
also in 1-1 correspondence with each other.



Note 5. Let f:M; > M, be a 1-1 onto map. Then f is a
homeomorphism iff it satisfies the following condition.

F is closed in M, iff f(F) is closed in M, .

Example 1. The metric spaces [0,1] and [0,2] with usual metric are
homeomorphic.

Proof. Define f:[0,1] — [0,2] by f(x) = 2x.
Clearly, f is 1 — 1 and onto.

Also f1(x) = %x

We note that f and f ! are both continuous.
~ f is homeomorphism.

Example 2. The metric spaces (0,) and R with usual metrics are
homeomorphic.

Proof. f:(0,00)>R by f(x)=Ilog,x is the required
homeomorphism. Here f~1(x) = e*.

Example 3. The metric spaces (_Tn,g) and R with usual metric are
homeomorphic and f: (_7”,2) — R defined by f(x) =tanx is the

required homeomorpism.

In this example, (_7”,2) is not a complete metric space whereas R is

complete.

This shows that completeness of metric spaces is not preserved
under homeomorphism.

Example 4. The metric spaces (0,1) and (0, o) with usual metrics are
homeomorphism.

Proof. Define f: (0,1) = (0,%0) by f(x) = —

1-x
We claim that f is 1-1 and onto.
Let f(x) = f().
. Y
T1-x T 1-y
LX— XY =Y —X).

~ x = y.Hence f is 1-1.
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Lety € (0, ).
. _ X _
“f@=y=st=y.

=y —Xxy = X.

=>x(1+y)=y.
= x =2,
1+y

% € (0,1) is the preimage of y under f.

Clearly f and f~! are continuous.
~ f is homeomorphism.

Example 5. R with usual metric is not homeomorphic to R with
discrete metric.

Proof. Let M; = R with usual metric.

Let M, = R with discrete metric.

Let f: M; - M, be any 1-1 onto map.

Now, {a} is open in M,.

But f~1({a}) = { f~1(a)}is not open in Mj.

Hence f is not continuous.

Thus any bijection f: M; — M, is not a homeomorphism.
Hence M, is not homeomorphism.

Definition. Let (M,, d;) and (M,, d,) be two metric spaces.

Let f:M; —» M, be a 1-1 onto map. f is said to be an isometry if
d,(x,y) = dz(f(x),f(y)) for all x,y € M;. In other words, an
isometry is a distance preserving map.

M; and M, are said be isometric if there exists an isometry f from M,
onto M,.

Example 6. R? with usual metric and C with usual metric are
isometric and f:R? - C defined by f(x,y) = x + iy is the required
isometry.

Proof. Let d,; denote the usual metric on R? and d, denote the usual
metric on C.



Leta = (x1,y;) and b = (x,,y,) € R

Then d;(a,b) = y/ (x; — %)% + (1 — ¥2)?

= [(x; —x2) +i(y1 — ¥2)|

= (g + iy1) + (2 + i y2)]
= d,(f (), f (b))
~ f is an isometry.

Note. Since an isometry f preserves distances, the image of an open
ball B(x,r) is the open ball B(f (x),r).

Hence it follows that under an isometry the image of an open set is
also an open set. Also if f is an isometry f ! is also an isometry.

Hence under an isometry the inverse image of an open set is open.
Hence an isometry is a homeomorphism.

However a homeomorphism from one metric space to another need
not be an isometry.

For example, f:[0,1] — [0,2] defined by f(x)=2x is a
homeomorphism. (refer example 1)

But f is not an isometry. (refer example 6).

6.4 UNIFORM CONTINUITY

Introduction. In this section we introduce the concept of uniform
continuity.

Definition. Let (M;,d;) and (M,,d,) be two metric spaces. Let
f:M; = M, be a continuous function. For each a € M; the following
is true. Given € > 0, there exist 6 > 0 such that

di(x,a) < 6= dz(f(x),f(a)) <e.

In general the number § depends on ¢ and the point a under
considertation.

For example, consider f: R — R given by f(x) = x2.
Leta € R. Let € > 0 be given.

We want to find & > 0 such that

Ix —a|l<éd=|f(x)-fla) <e ... (1)
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Clearly, if 6 > 0 satisfies (1), then any 6; where 0 < §; < § also
satisfies (1).

Hence if there exists a § > 0 satisfying (1), then we can find another
6, such that 0 < §; < 1 and §; also satisfies (1).

Hence we may restrict x such that |[x — a| < 1.
ra—1<x<a+1.
~x+a<2a+1l.
“f(x) = f(@)] = |x* — a?| = |x + al|x — a]
<|2a+1||x —a|if|x —a| < 1.

Hence if we choose § = min{1, |2a—£+1|} then we have |x —a|<d§ =
If(x) = fla)| <e.

Thus, in this example we see that the number § depends on both ¢
and the point a under consideration and if a become larger, § has to
be chosen correspondingly small. In fact, there is no § > 0 such that
(1) holds for all a.

For, suppose there exists § > 0 such that

lx —al <d=|f(x) — f(a)] < eforalla € R.
Take x = a+%6.
Clearly, |x —a| = %6 <é.

Sf ) - f@l <e.

1 2
<a+56) —a?

As[s v 2a] <
2 > a E.

<E&.

.

However this equality cannot be true for all a € R, since by taking a

sufficiently large, we can make %6 |%6 + 2a| > e,
Thus, there is no § > 0 such that (1) holds for all a € R.
Let f:R — R be given by f(x) = 2x.

Leta € R. Let € > 0 be given.



Then |f(x) — f(a)| = |2x — 2a] = 2|x — al.
=~ If we choose § = %sthenwe have |[x —a| < d = |f(x) — f(a)| < e

Here § depends on ¢ and not an a.

(i.e.) for a given € > 0 we are able to find § > 0 such that § works
uniformly for all a € R.

Definition. Let (M;, d;) and (M, d,) be two metric spaces.

A function f: M; — M, be a uniformly continuous on M, if given & >
0, there exist § > 0 such that

dl(ny) <é= dZ(f(x)if(y)) <e.

Note 1. Uniformly continuity is a global condition on the behavior of
a mapping on a set so that it is meaningless to ask whether a
function is uniformly continuous at a point. Continuity is a local
condition of the behavior of a function at a point.

Note 2. If f:M; —» M, is uniformly continuous on M; then f is
continuous at every point of M.

Moreover for a given € > 0, there exist § > 0 such that x,y € M; and

di(x,y)<é=> dz(f(x)'f()’)) <e

Thus, uniformly continuity is a continuity plus the added condition
that for a given € > 0 we can find § > 0 which works uniformly for
all points of M.

di(x,y)<é=> dz(f(x)'f()’)) <e

Note 3. A continuous function f:M; - M, need not be uniformly
continuous on M.

For example, f:R — R defined by f(x) = x? is continuous but not
uniformly continuous R.

Solved problems

Problem 1. Prove that f:[0,1] = R defined by f(x) = x?2 is uniformly
continuous on [0,1].

Solution. Let € > 0 be given. Let x, y € [0,1].

Then
If ) = fFI = 1x* —y?| = Ix + yllx — y|
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<|x—y| (sincex<landy<1)

1
o e =y <§s =>|f) - f)] <e

=~ f is uniformly continuous on [0,1].

Problem 2. Prove that the function f:[0,1] — R defined by f(x) = 2

X
is not uniformly continuous.

Solution. Let € > 0 be given. Suppose there exist § > 0 such that
Ix =yl <8=1fx)-fI<e.

Takex=y+%6.
Clearly |x —y| = %5 <.

2 fGO) - f@)] < e.

-1 <e
2(y+56) y

o
(2y+68)y

becomes

. . . )
This inequality cannot be true for all y € (0,1) since 150

arbitrarily large as y approaches zero.
=~ f is not uniformly continuous.

Problem 3. Prove that the function f: R — R defined by f(x) = sinx
is uniformly continuous R.

Solution. Let x,y € Rand x > y.

sinx —siny = (x —y)cosz where x >z>y
theorem)

(by mean value

~ |sinx —siny| = |x — y||cos z|
< |x —y| (since |cos z| < 1).
Hence for a given € > 0, if we choose § = ¢, we have

lx —yl| <8 =|f(x)— f(y)| = |sinx —siny| < .



Continuity

~ f(x) = sinx is uniformly continuous on R.

CHECK YOUR PROGRESS NOTES

1. Let d; be the usual metric on [0,1] and d, be the usual metric on
[0,2]. The map f:[0,1] — [0,2] defined by f(x) = 2x is not an
isometry.

2. Define open map.

6.5 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS

1. Letx,y € [0,1]. Then d,(f (x), (1)) = If () — f()I = [2x — 2]
= 2|x — y| = 2d,(x, y). Therefore,d, (x, y) # d»(f (x), f ().
Hence f is not an isometry.

2. A function f: M; - M, is said to be an open map if f(G) is open
in M, for every open set G in M;.

6.6 SUMMARY

7. Let (M,d) be a metric space. Let (x,) = x4, X3, ..., Xp, ... be a
sequence of point in M. Let x € M. We say (x,,) is converges to
x if given € > 0 there exists a positive integer n, such that
d(xp,x) < € such that for all n > n,. Also x is called a limit of
().

8. f is said to be continuous if it is continuous at every point of
M.

9. fiscontinuous ata iff lim,_,, f(x) = f(a).

10. Let (M4, d) and (M, d,) be two metric spaces. Then any
constant function f: M; = M, is continuous.

11. Let (M4, d,) be a discrete metric space and let (M,, d,) be any
metric space. Then any function f: M; — M, is continuous.

12.Let (M;,d;) and (M,, d,) be two metric spaces. Let a € M;. A
function f: M; - M, is continuous at a iff (xp) = a
= (f(x) - f(@.

13. f is continuous iff inverse image of every open set is open.

14. f is an open map if the image of an open set in M, is an open
setin M,.

6.7 KEYWORDS

1. Limit: Let (M4, d,) and (M,, d;) be metric spaces. Let f: M; - M, be a
function. Let a; € M, and [ € M,. The function f is said to have limit as
x — a if given € > 0 there exists § > 0 such that 0 < d;(x,a) <§ =
d,(f(x),1) < e. Wewritelim,_, f(x) =L
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2. Continuous: Let (My,d;) and (M,,d,) be two metric spaces.
Let a € M;. A function f: M; - M, is said to be continuous at a if
given & >0, there exists § >0 such that d;(x,a) <d§d=
do(f (%), f (@) <.

3. Homeomorphism: Let (M;,d,) and (M,, d,) be metric spaces.
A function f: M; — M, is called a homeomorphism if (i)f is 1-1 and
onto. (ii) f is continuous. (iii) £~ is continuous.

4, Homeomorphic: M; and M, are said to be homeomorphic if
there exists a homeomorphism f: M; = M,.
5. Open map: A function f: M; — M, is said to be an open map if

f(G) is open in M, for every open set G in M;.
6. Closed map: If is called a closed map if f(F) is closed in M,
for every closed set F in Mj.

7. Uniformly continuous: Let (M;,d;) and (M,, d,) be two metric

spaces.

8. A function f:M; —» M, be a uniformly continuous on M; if

given >0, there exist 6>0 such that

di(x,y) <> dz(f(x)»f(Y)) <E&

6.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1.  Show that any function whose domain is discrete metric
space is continuous.

2. Let f:R? -» R? is defined by f(x,y) = f(x,y) show that
f is continuous on R2.

3. Prove that any two open intervals are homeomorphic.
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7.0 INTRODUCTION

In this chapter, we shall introduce the notion of the
derivation of the function and the properties of such functions. We

shall consider only real valued functions defined on intervals.

7.1 OBJECTIVES

After going through this unit, you will be able to:

e Understand what is meant by differentiability of functions.
e Determine derivability and continuity.

e Discuss algebra of derivatives.
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7.2 DIFFERENTIABILITY OF A FUNCTION

Definition. Let f be a be a real valued function defined on an interval

[cR. If a€l, then f is said to have a derivative at x = a, if

f()-f(a)
h

lim,_,, exists. If this limit exists, then f is said to be

differentiable at a and its derivative is denoted by f'(a). Note that

this limit is a real number. If we make the substitution h = x — qa,

fla+h)—f(a)

then the above limit can also be written as lim,,_, -

Thus if E is the set of points of I at which f’(a) exists and
E # @, then f' is itself a real valued function on E. If f' is defined on
E. If f' is defined at every point of E, then f is said to be
differentiable on E. It is possible that E # @ and there are functions
which are differentiable at some points in the domain but not at

other points of the domain.

7.3 DERIVABILITY & CONTINUITY

Theorem 1. If the real valued function f is differentiable at the point

a € R, then f is continuous at a.

Proof. We know that f is continuous at x = a if limf(x) = f(a) or
X—a

equivalently }ci—%[f(x) —fla)]=0.

For, x # a, we have f(x) — f(a) = %(x —a).

Since lim,._,, f-7@ _ f'(a) and lim(x — a) = 0.
(x—a) x—-a

We get lim[f (x) — f(a)] = f'(a).0 = 0.

Therefore, if f is differentiable at x = a, then it is continuous

atx = a.

The converse of the above theorem is false. There exists
functions continuous at a point but not differentiable at the point. We

shall illustrate this by an example.



Example 2. Let f(x) =|x| for x € (—oo,00). This function is

continuous everywhere and in particular it is continuous at x = 0.
Ifx>0,f(x)—f(0)=xandifx <0, f(x) — f(0) = —x.

f)—£(0) _x

== lifx > 0and 2@ = =X

Hence, we have
x—0 X

—1lifx < 0.

Therefore, limx_,o% does not exist. Thus f does not

have a derivative at 0, even though f is continuous at 0.

Example 3. Let f(x) = x|x| for x € R then f'(x) = 2|x| for every x in
R.

From the definition of the function, f(x) = x? if x > 0 and
fx)=—x* if x<0. If a>0 then we have

— 2_ 2
fl(a) — limh_>0 f(a+h2 f(a) — limh_>0 (a+h)h (a) :

Since a + h > 0, when |h| is sufficiently small,

2ah—h?

f'(a) = limy,_, = limy_o(2a + h) = 2a.

If a > 0, then

—(a+h)*-(a)*

f’(a) — 1imh—>0 w = limh—>0 -

Since a + h < 0, when |h| is sufficiently small,

—2ah—h?

f'(a) = limy_,g = limy_o(—2a — h) = —2a.
Let us consider the case when x = 0,

£1(0) = limy o LD = gy o 28 < im,,_g1] = o0.

Combining all the above three cases, we get f'(x) = 2|x| for

every x in R.
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Note. The function f' may have a derivative denoted by f'* which is
defined at all points where f' is differentiable. f"' is called the

second derivative of f.

7.4 ALGEBRA OF DERIVATIVES

The next theorem gives the different formulae for
differentiating the sum, difference, product and quotient of two

functions.

Theorem 4. If f and g are both differentiable at x = a in R, then

f +g,f — gand fg are differentiable and have derivatives given by

O F+9)'@=f'(a)+g'(@.

(i) (f —9)' () = f'(@) — 9" (®).

(iii) (fg)'(a) = f'(a) g(a) + f(a) g'(a).

(iv) Furthermore, if g'(a) # 0, then f/g is differentiable at

a and has derivative given by

([)' _9@f'(@) ~f(a) g'(a)
g [9(a)]? '

Proof. We shall prove (iii) and (iv), since (i) and (ii) can be proved

easily. To prove (iii), let h = fg. Then for x # a, we get
h(x) — h(a) = f(x)g(x) — f(a)g(a)
= f(0)g(x) — f(a)g(x) + f(a)g(x) —
fla)g(a)

And so, h(Xi:Z(a) _ f(x)—f(a)g(x) + f(@) g(Xi:i(a)

xX—a

. . f(x)=f(a) _Fr : gx)-g(a) !
Since lim,._,, e = f'(a), lim,_, T U9 (a)

By Theorem 1, limg(x) = g(a). Hence, by using the theorem
xX—a
on limits, h has a derivative at a and

h(x)—h(a) _

K@) = lim "2 r7(0) g(a) + (a) g'(@).

(x-a)

To prove (iv), let h = f/g. Then we have,



h(x)-h@ _ 1 f)-fla) gx)—g(a)
(x-a) _g(x)g(a)[ (@) (x-a) fl@ (x-a) ]

Since f(x) and g(x) are differentiable at a having the
derivatives f'(a) and g'(a) and when # 0, limg(x) = g(a), we get
X—a

from the above

, h(x)-h(a) _ g@f'(@)-fla)g’ (a)
myse =gy = 72(@)

Example 5. The derivative of any constant is zero. If f(x) = x, then
f'(x) = 1. By using (iii) repeatedly we see that x™ is differentiable
and the derivative is nx™! for any integer n, when x # 0. Thus a
polynomial is differentiable and using (iv) repeatedly we see that
every rational function is differentiable except at the point where the

denominator is zero.

For two functions f and g, the composite function

h = f o g is defined at each pointa, h(a) = (g ° f)(a) = g[f(a)].

Theorem 6. If f is differentiable at a, and g is differentiable at
f(a),then h = f o g is differentiable at a and has the derivative

h'(a) = g'lf (@]f ().

Proof. Let f be differentiable at a and g be differentiable at b = f(a).
It is assumed that f is defined in some neighbourhood of a and that

g is defined in some neighbourhood of b = f(a).

f is continuous at a and g is continuous at b = f(a). Thus

h = f o g is continuous at x = a.

Let us define n(x) = f(x) f(a) — f'(a).

f&x)-f(a)
(x—a)

neighbourhood of a and n(x) -0 as x — a. Hence, if f is

Since lim,_, exists, 7n(x) exists in a deleted

differentiable at a, we can write

f&) = f(a) = (x = D)[f'(@) + n(x)].
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Similarly, since g is differentiable at b = f(a). We have
9(y) —g() = (y = b)lg'(b) + y(y)] wherey(y) » O asy — b.

Now, we have

h(x) —h(a) =(go flx—(gefa=glf(x)] - glf (@]

=g()—gb) =G -b)g' () +y®)]
=[f() - f@I1]g'(f (@) +y(f(0))].
= (x —a)[f'(a) + n()][g'(b) + y(x)].

If x # a, we get

h(x)-h(a) _

=[g'®) + yWIIf'(x) + n(x)].

x—a

If we take the limit as x = a and note that by theorem 1, f is

continuous at a, we see thaty = f(x) — f(a) = b.
Hence, n(x) = 0 and y(y) — 0. Therefore,

h(x) —h
MO ywr@

h'(a) = lim,_,, —

This complete the proof of the chain rule on differentiation.
The following theorem known as Inverse function theorem
gives the relationship between the derivatives of inverse functions. If

f is 1 — 1 function on [a, b], then q[f (x)] = x (a < x < b) where q is

the inverse function for f.

7.5 INVERSE FUNCTION THEOREM

Theorem 7. (The Inverse Function Theorem). Let f be a 1 — 1 real
valued function on L. Let g be its inverse function. If f is continuous

at a € I, and q has the derivative at b = f(a) with q'(b) # 0, then

' i "(q) = ——
f'(a) exists and f'(a) = 70



Proof. For h # 0, let v(h) = f(a + h) — f(a). Since f is 1-1, v(h) # 0 for
h # 0. From this, we get

b+v(h) = f(a) +v(h) = f(a+ h).

Hence, we have q[b + v(h)] = q[f(a + h)] = a + h, since q is the

inverse function of f.

Now we have f(a+h2_f(a) _ [b+v@m)]-b

a+h—a

_ v(h)
~ qlb+v(R)]-q(b)

1

- (D)

[q[b+v(R)]-q(b)]/v(h)

By hypothesis f is continuous at a. So limj,_, v(h) = 0.

Thus, when h — 0, the right side of (1) tends to the limit q’;(m'
Hence we have

fla+h)-f(a) __1
h q' ()’

limy,_,,

This completes the proof of the theorem.

Example 8. Using the Inverse Function Theorem, find the derivative of

flx) = x'/n wheren € N and x > 0.

The inverse function of f is x™. Let q(x) = x™. At any point a >

0, ¢'(a) = na™ 1. Hence, by the theorem

1 1 1
! = = — — q(tn)-1
IO = @ = g 0"

7.6 DAURBOUX'S THEOREM ON DERIVATIVES

Theorem 9. (darboux property). If f has a derivative at every point of
the closed interval [a, b], then f’ takes on every value between f'(a)

and f'(b).
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Proof. It is enough if we consider the case in which f'(a) < f'(b).
Thus if f'(a) < k < f'(b), we have to show that there exists a c in
(a,b) such that f'(c) = k.

Let us now define the function g on [a, b] asg(x) = f(x) — kx

for a < x < b. From this we have as g'(x) = f'(x) —kfora < x < b.

Thus g'(x) exists for all x in [a,b] and g is continuous on
[a, b] by theorem 1. Hence, by Theorem 8, g takes a minimum value
at some point ¢ € [a, b]. But g'(a) = f'(a) — k < 0. Since g'(x) <0
at x =a, g cannot attain its minimum value at x = a. For the
minimum value of g at a, g'(a) =0 by theorem 6. Similarly
g'(b) =f'(b) —k>0. So g cannot attain its minimum value at
x = b also. Thus we have a < c < b. We have f'(c) =k which

proves the theorem.

Example 10. Let f(x) =0 for —1<x<0 and f(x)=1 for
0 < x < 1.Is there a function F such that F'(x) = f(x) in [-1,1] ?

Suppose there exists a function F such that F'(x) = f(x) in [-
1,1]. Then, since f(x) is defined in [-1,1], F' exists at every point of
[—1,1]. So by the above Darboux property, F' takes every value
between F'(—1) and F'(1). But F'(1) = f(-1) =0 and F'(1) =
f(1) = 1. So F' take every value between 0 and 1. But this cannot
happen, since F' takes only two values 0 and 1 from the definition of

F'in [-1,1]. So there is no function satisfied the given condition.



CHECK YOUR PROGRESS

1. State inverse limit theorem.
2. State Darboux property.

7.7 ANSWER TO CHECK YOUR PROGRESS
QUESTIONS

1. Let f beal— 1 real valued function on I. Let g be its inverse
function. If f is continuous at a € I, and q has the derivative at

b = f(a) with q’(b) # 0, then f'(a) exists and f'(a) = q,tb).

2. If f has a derivative at every point of the closed interval [a, b],
then f' takes on every value between f'(a) and f'(b).

7.8 SUMMARY

15.If the real valued function f is differentiable at the point
a € R, then f is continuous at a.

16. If f is differentiable at a, and g is differentiable at f(a), then
h = fog is differentiable at a and has the derivative

h'(a) = g'lf (W]f ().

7.9 KEYWORDS

9. Derivative: Let f be a be a real valued function defined on an

interval I c R. If a € I, then f is said to have a derivative at

f)-f(a)
h

x = aq,iflim,_,, exists. If this limit exists, then f is said to

be differentiable at a and its derivative is denoted by f'(a). Note

that this limit is a real number. If we make the substitution

h=x—a, then the above limit can also be written as
f(a+h)—f(a)

limh_,o h
7.10 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1. If f(x) = |x3| forx € R, find f'(x) and f"' (x).

2. If f(x) = x|x|, prove that f""(x) =2 if x >0, and f""(x) = =2 if
x <0.

3. Suppose f is differentiable at a € I and f'(a) # 0. Prove that |f]
is differentiable at a and find |f|'(a).
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4. If f is a function such that f? is derivable at a, dose it follow

that f is derivable at a?
5. Show that the function f defined by f(x) = x? cos% if

x # 0and f(0) = 0.
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8.0 INTRODUCTION

From elementary calculus, we know that the derivative of a real-
valued function f on I at ¢ gives the slope of the tangent to the curve
y = f(x) at x = c. Let f have derivatives at all points of I. Then
y = f(x) has tangents at all points of I. If f'(c) exists, then the curve
is said to be smooth at x = c. We have already noted in the previous
section that if a real valued continuous function defined on the
closed and bounded intervals attains the extremum value at ¢ where
c €I and f'(c) exists, then f'(c) = 0. If the curve y = f(x) has its
end points on the x-axis (the curve crosses the x-axis at both the end
points of the interval) and if it is smooth, it is geometrically evident
that there will be horizontal tangent at some point on the curve. That
is at some point on the curve, ' will become zero. This result is
made precise in the following theorem known as Rolle’s Theorem
which is an important result in the differential calculus. We shall
discuss in detail even the slight variation of the theorem so that
readers will become familiar with all the aspects of this basic
theorem in differential calculus.

8.1 OBJECTIVES

After going through this unit, you will be able to:
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° Understand what is meant by Rolle’s Theorem, Mean
value theorem

o Discuss the Fundamental theorem of calculus

o Discuss the properties of Power series expansion
8.2 ROLLE’S THEOREM

Theorem 1. (Roll’s Theorem) If f is continuous real-valued function
defined on a bounded and closed interval [a, b] with f(a) = f(b) =0

and differentiable at every point x in the open interval (a, b) such
that f'(c) = 0.

Proof If f is identically zero on [a, b], it attains a maximum and a
minimum valu on [a,b]. If f(x) >0 for some x in (a,b), the
maximum value of f on [a, b] will not be attained at a orb, sincev



f(a) = f(b) = 0 by hypothesis. Hence, f will attain its maximum
value will be attained in (a, b) so that for a point c in (a, b),f'(c) = 0.

Corollary. If F(x) is a polynomial, then between any two roots of
F(x) = 0,there exists at least one root of F'(x) = 0.

Proof. Let a and b be two roots of F(x). Since F(x) is a polynomial,
F(x) is continuous in [a,b] and derivable at every point of (a,b).
Since a and b are the roots of F(x), we get F(a) = F(b) = 0. Hence,
by Rolle’s theorem, there exists at least one point ¢ in (a, b) such
that F'(c¢) = 0. This means that there exists at least one root of
F'(x) = 0.

Note 1. The following statement of Rolle’s theorem is an alternative
form where we do not assume that f vanishes at x = a and x = b.
We shall give an independent proof of the theorem.

Theorem 2. If a function f is continuous in [a, b] with f(a) = f(b)
and if f is differentiable at every point of (a, b), then there exists at
least one point c in (a, b) such that f'(c) = 0.

Proof. If f is constant throughout [a, b], then f' is zero at all points of
(a, b) so that the theorem is true.

Let f be not constant throughout [a,b]. Since f is
continuous in [a, b], it is bounded in [a, b] and it attains one or other
of its bounds in [a, b] which is different from f(a). Let U be its upper
bound. Then f attains its upper bound at least once in (a, b). Then
for all values x in [a, b], f(x) < f(c). So when h is an infinitesimal,
we get

fc+h)—f(c)<O.
If h is positive, we get

f(c+h;)l_f(6)<0

fle+h)—f(c) <

0.
h

So that limy,..,o

The above inequality implies that f'(c) < 0 (D
If h is negative, then we get

f(C+h})l—f(C)<O
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flc+h)—f(c) <.

So that limy,_.,o .

The above inequality implies that  f'(¢c) > 0 (2)
Combining (1) and (2),we get f'(c) =0

Similarly we prove the theorem when f attains its lower
bound in (a, b) which is different from f(a).

Corollary. Theorem 1 can be deduced from Theorem 2.

Note 2. The above theorem can be stated in a slightly different form
as follows.

Theorem 3. Let f be differentiable at every point of an open interval
(a,b)and let f be continuous at both the end points a and b. If
f(a) = f(b), there is at least one point c in (a, b) at which f'(c) = 0.

Since f is differentiable at every point in the open
interval(a, b), it is continuous in (a,b). By hypothesis, it is
continuous at both the end points a and b. So f is continuous in the
bounded closed interval [a, b]. Further note that we do not assume
f(a) = f(b) = 0. It is enough modified for this slightly different
form of the theorem, we shall give a different proof due to its
importance.

Proof. Under the hypothesis, we shall assume that f’ is never 0 in
(a,b) and arrive at a contradiction. Since f is continuous on the
bounded and closed interval [a, b], it attains its maximum M and its
minimum m at some points in [a, b]. None of the extreme values are
attained at a point of (a, b). For if it attains the extreme values at the
points in (a,b),f’ would vanish in (a,b) which is against our
assumption. So they are both attained at the end points. Since
f(a) = f(b), then m = M and hence f is constant on [a, b] so that f’
is zero on [a, b]. This contradicts our assumption that f’ is never
zero on [a, b]. Hence, for some point c in (a, b),f'(c) = 0.

Note. None of the conditions in the Rolle’s theorem can be relaxed
as shown by the following Examples 1 to 3

Example 1. Letg(x) =xifx € [0,1) and g(x) = 0ifx = 1.

g is differentiable in the open interval and g(0) = g(1) = 0. It is
continuous in the open interval (0,1) but not in the closed interval
[0,1], since it is not left continuous at the right end point x = 1.
Since g’'(x) = 1 for every x € (0,1), there is no point ¢ in (0,1) with



g'(c) = 0. This shows that the loss of continuity at an end point is
enough for the failure of the Rolle’s theorem.

Example 2. let f(x) =1 — |x|forx € [-1,1]. Now f(—=1) = f(1) =0
and f is a continuous function on [—1,1]. Since f, and f! are different
at x = 0, f obeys all differentiable at x = 0. So f is not differentiable
in (—1,1). Thus f obeys all the hypothesis of Rolle’s theorem except
that it is not differentiable at x = 0. For this f, there is no point c in
(—1,1) for which f'(c) = 0. Hence, the conclusion of Rolle’s theorem
is not true, if we weaken the assumption of the open interval.

Example 3. Let f(x) = x in [0,1]. Then f(x) is continuous in [0,1]
and derivable in (0,1). But f(0) # f(1). There is no point c in [0,1]
such that f'(c) = 0.

Example 4. Verify whether the function f(x)=sinxin [0, ]
satisfies the conditions of Rolle’s theorem and hence find ¢ as
prescribed by the theorem.

We know that the function given by f(x) = sinx in [0, ] is
continuous in [0, 7] and differentiable everywhere in(0, ). Further
f(0) =0 = f(m). Hence, f satisfies the conditions of the Rolle’s
theorem. At w/2 € [0,m], f'(x) =cosx =0. So f' vanishes at
/2 € [0, m]. Hence, in the Rolle’s theorem ¢ = /2.

Example 5.  Verify the Rolle’s theorem for the function f(x) =

Vi—-x2(-1<x<1).

It is to be noted that f is continuous in the closed interval
[—1,1] and it is not derivable in [—1,1], since this function has no
derivatives at x = —1 or 1. It is differentiable in(—1,1). Now if ¢ =
0,we get f'(0) = 0. Thus the Rolle’s theorem is true.

Example 6. Prove that there is no value of k such that the equation
x3 — 3x + k = 0 has two distinct roots in [0,1].

Let us suppose on the contrary that there is a real number k'
such that x> —3x + k' = 0 has @ and g as its distinct roots in [0,1]
where a <f and a#f. Now a#f and «,f €[0,1] implies
0<a<1land 0<p <1 Since a and S are the roots of the above
equation, we have a® —3a + k' =0, B — 38 + k' = 0. Now consider
the function f(x) defined in [, ] as follows:
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f(x) =x3—3x+ k' forx € (a,p).

Since f(x) is a polynomial in x of degree 3, it is continuous on [«, ]
and it is derivable in (a,B) with f(a) = f(B) = 0. Hence, all the
conditions of Rolle’s theorem are satisfied by f(x) in [a,B].
Therefore, there exists ¢ € (a, ) such that f'(c) = 0. This implies
3c¢2—3 =0. Hence, ¢ = +1 ¢ (0,1). This implies ¢ € (a, ) which
contradicts our assumption that 0 < @ < 1and 0 < 8 < 1. Therefore,
there exists no real number k for which the given equation has two
distinct roots in [0,1].

a

Example 7. Prove that if %+%+ et "2‘1 + a, = 0, then the

equation agx™ + a;x""! + - + a,, = 0 has at least one root between
0 and 1.

Now consider the function defined by

n+1 n
x aix
+

n+1 n

f(x) =aq + .-+ ayx in [0,1].

Then f(1) =0 by hypothesis and f(0) =0. So f(1) =0 = f(0).
Since f is a polynomial of degree n in [0,1], it is continuous and
differentiable in [0,1]. Therefore , the hypothesis of Rolle’s theorem
are satisfied. Hence f'(x) = 0 for some x € (0,1). So f'(x) = apx™ +
a, x" 1+ -+ a, = 0forsome x € (0,1).

We have already shown in the Example 7 of 7.1, that a function can
have a derivative at each point of the interval but the derivative
considered as a function need not be continuous. The following
theorem shows that although they are not necessarily continuous,
and derivatives like continuous functions satisfy the intermediate
value property.

Theorem 4. (Darboux Property). If f has derivative at every point of the closed
interval [a, b], then f” takes on every value between f'(a) and f'(b).

Proof. 1t is enough if we consider the case in which f'(a) < f'(b).
Thus if f'(a) < k < f'(b), we have to show that there exists a ¢ in
(a, b) such that f'(c) = k. Let us now define the function g on [a, b]
as g(x) = f(x) —kx for a<x<b. From this we have g'(x) =
f'(x) —k for a <x < b. Thus g'(x) exists for all x in [a, b] and g is
continuous on [a, b] by Theorem 1 of 7.1. Hence, by Theorem 8 of 4.5,
g takes a minimum value at some point ¢ € [a,b]. But g'(a) =
f'(a) — k < 0. Since g'(x) < 0 at x = a, g cannot attain its minimum
value at x = a. For the minimum value of g at a, g'(a) =0 by
Theorem 6 of 7.1. similarly g'(b) = f'(b) — k > 0. So g cannot attain



its minimum value at x = b also. Thus we have a < ¢ < b. We
have f'(c) = k which proves the theorem.

We shall illustrate the use of above theorem by the following
example.

Example 8. Letf(x) =0for—1<x<0andf(x) =1for0<x < 1.
[s there a function F such that

F'(x) = f(x)in [-1,1]?
Suppose there exists a function F such that F'(x) = f(x) in [-1,1].

Then, since f(x) is defined in [—1,1], F’ exists at every point
of [—1,1]. So by the above

Darboux property, F' takes every value between F'(—1) and F'(1).
But F'(—=1) = f(—1) = 0 and

F'(1) = f(1) = 1.

So F' should take every value between 0 and 1. But this
cannot happen, since F' takes only two values 0 and 1 from
the definition of F' in [-1,1]. So there is no function F
satisfying the given condition.

In the above example, it is important to note that f is not a
continuous function in [—1,1] and f is not the derivative of
any function F in [—1,1]. But it will be shown later that if f is a
continuous function on [a, b], there can exists a function F on
[a, b], such that

F'(x) = f(x) forall x in [a, b].

8.3 MEAN  VALUE THEOREM FOR
DERIVATIVES

If we consider a smooth curve y = f(x) in [a,b], it is
intuitively clear that at some point c in (a, b), the Slope of the tangent
f'(c) at x = ¢ will be equal to the slope of the chord joining the
points a and b on the curve. This leads to the following theorem
known as the mean value theorem for derivatives.

The most important aspect of the mean value theorem for
derivatives is that it gives a relation between the derivative and the
function so that we can obtain information about the function from
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the properties of the derivatives. We shall use Rolle’s theorem to
prove the following mean value theorem.

Theorem 1. (Mean Value Theorem for Derivatives). If f is a
continuous function on the closed and bounded interval [a, b] and if
f'(x) exists for all x in the open interval (a, b) such that

fb) - f(@)

fro =222

Proof. Let us consider the function h defined as follows:

h(x) = f(x) - f()-igl_z&l( —a)

when a <x <b. From the definition of h, we have
h(a) = 0 = h(b). Further h is continuous in the closed interval [a, b]
and differentiable in the open interval (a,b). So h satisfies all the
conditions of the Rolle’s Theorem. Hence, there exists a point c in the
open interval (a, b) such that h'(c) = 0.

But h'(c) = f'(¢c) — Mwhlch proves that

b a
f()_ﬂzim
The above theorem is also known as Lagrange’s Mean Value
Theorem. It is important to note that the theorems do not exactly
locate the positions of the points like ¢ where the function takes one
or more mean values. But what all it asserts is that the point lies
between a and b. For some functions, the position of the point ¢ may
be specified well, but in most of the case it is very difficult to
determine these points.

Note. The conclusion of the theorem may fail to be true if there is
any point between a and b where the derivative of the function does
not exist as shown by the following example.

Example 1. Let f(x) = |x|. This function is continuous everywhere
on the real axis and has derivatives at all points of the real axis
except at x = 0. Now consider the interval [—1,2], f(a) = f(—1) =1,

fb) =f(2) =2

f)—f(@) _2-1 _1

Hence, a . >

But f'(x) =1lifx >0and f'(x) = —1ifx < 0.



Example 2. Verify the hypothesis and the conclusion of the Mean
Value Theorem for the following functions:

(). f(x) =logxin|[1,e]
(ii). f(x) = Ax? + Bx + C in [a, b]
(iii). f(x) = = in2 < x < 4

) The function f(x) = logx is continuous in [1, e] and it has
a derivative f'(x) = % in (1,e) and f(e) — f(1) = loge. So
the Mean Value Theorem implies loge = (e — 1)§ for a
suitable x in [1, e].

(i)  Being a polynomial, Ax? + Bx + C is continuous in [a, b]
and derivable in (a, b).

f(b) — f(a) = A(b?> —a?®) + B(b — a) and

f'(x) = 2Ax + B.
The Mean Value Theorem implies the existence of ¢ in
(a,b) such that

A(b? —a?)+ B(b —a) = [2Ac + B] (b — a).
Since a # b, we get A(b + a) + B = 2Ac + B.

Since A # 0, we get from the above ¢ = b% which is in the

open interval (a, b).

(iii) F(x) = xle is continuous in [2,4] and differentiable in
(2,4),

1

f®-f@D==5.f®=-57

Hence, the existence of ¢ in the Mean Theorem implies

_z___2 _ 12 =
3= T and hence (¢ — 1)* = 3.

Solving (¢ — 1)? = 3 for ¢, we get ¢ = 1 ++/3.

Clearly,c =1+ V3 lies in [2,4], while 1 — V3 does not
belong to [2,4]. Hence ¢ = 1 + /3.

The Mean Value Theorem can be expressed in the
following alternative form.

Theorem 2. If a function f(x) is continuous in the closed interval
[a, a + h] and differentiable in the open interval (a, a + h) then there
exists at least one number 6 between 0 and 1 such that f(a + h) —

f(a) = hf'(a+ 6h).
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Proof Let us take b = a + h in the Mean Value Theorem. Then
a+ 6h is equal to a or b according as 6 =0 or 6 = 1. Here if
0 <60 <1,a+ 6hissome point in (a, b). So ¢ can be taken as a + 6h
in the statement of the Mean Value Theorem. Hence, we obtain

f(a+h) —f(a) = hf'(a+ 6h).

Example 3. Determine 8 that appears in the Mean Value Theorem
given above for the function
1

f(x) = x* —2x+ 3 for a:%andh:E

Now f(a+h)—f(a)=—>andhf'(a+6h)=G+5—1).

Hence, the Mean Value Theorem given above yields,

“1o14f qor=l
4 2 2 2
The following theorems are the very important consequences

of the Mean Value Theorem.

Theorem 3. If f is a real valued function defined on closed interval
[a, b], such that f’'(x) = 0 for all x in the open interval (a, b), then
f (x) must be a constant in the open interval (a, b).

Proof Let x; and x, be any two points in (a,b) with x; < x,, f
satisfies all the conditions of the Mean Value Theorem in the [x;, x,].
Hence, by the Mean Value Theorem, there exists a point ¢ in the open
interval (x4, x;) such that

f’(C) — f(xz)—f(xl).

X2—X1
But f'(c) = 0 by hypothesis. Therefore, f(x;) — f(x,) =0 for all
X1, X, in the open interval (a,b). Thus f(x;) = f(x,) for any two

different points x; and x, of (a, b). In other words, f is constant on
(a,b).

Theorem 4. Let f and g be any two real valued differentiable
functions on [a, b] such that f'(x) =g'(x) for all x in [a, b]. Then
f(x) —g(x) = ¢ which is constant in [a, b].



Proof. Let h(x) = f(x) —g(x). Then h'(x) = f'(x) — g'(x) = 0 for all
x in [a, b]. Therefore, by the previous theorem h(x) = c.

Theorem 5. If f is a continuous real valued function on [ and if
f'(x) > 0 for all x in I except possibly at the end points of I, then f is
strictly increasing on I and hence f is one-to-one.

Proof. Let us suppose x4, x, € [ with x; < x,. Then f is continuous
on [ x4, x,] and is differentiable in ( xq,x;). Then by the Mean Value
Theorem, there is a point ¢ in ( x4, x,) such that

f/(c) — f(xz)—f(xﬂ_

X2—Xq

Since x, —x; > 0 and f'(c) > 0 by hypothesis, it follows that
f(xy) —f(xy) >0. That is, f(x;) < f(x,). Hence, f is strictly
increasing on (a, b). So f is one-to-one.

A similar result holds good when f'(x) < 0 on I and we can
state the result without proof as follows, since the proof runs parallel
to the above theorem.

If f is differentiable on I and f'(x) < 0 for every x € I, except
possibly at the end points of I, then f is monotonic decreasing on I.

Example 4. Find the intervals in which the polynomial 2x3 — 15x2 +
36x + 1 is increasing or decreasing.

Let us take f(x) = 2x3 — 15x% + 36x + 1.

Hence, f'(x) = 6x% —30x + 36 = 6(x — 2)(x — 3).
Now f'(x) >0forx <2and x > 3.

Further f'(x) <0for2<x<3

and f'(x) =0forx =2and x = 3.

Thus f'(x) is positive in (—o0,2) and (3,) and negative in (2,3).
Hence, f is monotonically increasing in the intervals (—oo, 2], [3, 00)
and monotonically decreasing in (2,3).

Theorem 6. If ' exists and is bounded on some interval I, then f is
uniformly continuous on 1.

Proof. Since f' is bounded in the I, there exists a M > 0 such that
If'(x)| <M for all x €. Let xq,x, €I with x; < x,. Then by
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applying the Mean Value Theorem to f in [x,x;], there exists
¢ € (x;,%,) such that f'(c) = L&~/

X2—Xq

Consequently we get from the above hypothesis

f(x2)=f(x1)

X2—X1

<M.

Hence, we obtain from the above inequality |f(x;) — f(x1)| <
M|x, — x4|. Since x; and x, are arbitrary points of I, it follows that

|f(x3) — f(xy)| < M|x, — x4| forall x4, x, € I.

To show that f is uniformly continuous on I, let € > 0 be given. Then
we can choosea § = % Hence, if x4, x, € I with [x; — x,| < §, we get

|f(x2) = f(xy)| < M|xy — x1| < M6 < g, the same § serving for all
points in /. Hence, f is uniformly continuous on I.

Example 5. Prove that the following functions are uniformly
continuous:

M fe)=g;in[02]
(i) f(x) =x%+ 4xin[-1,1].

(i) For the function f in [0,2], f’ exists and |f'(x)| < %Which implies
that f’ is bounded in [0,2]. So by the above theorem f is uniformly
continuous in [0,2].

(i) For the function fin [—1,1], f' exists and |f'(x) < 6| which
implies that f’ is bounded in [—1,1]. So by the above theorem f is
uniformly continuous in [—1,1].

Now we shall give below a generalization of the Mean Value
Theorem known as Cauchy’s Mean Value Theorem.

Theorem 7. Let f and g be continuous functions on the closed and
bounded interval [a,b] with g(a) #g(b). If both f and g are
differentiable at each point of the open interval (a, b) and f'(x) and
g'(x) are not both equal to zero for any x € (a, b), then there exists a
point c in the open interval (a, b), such that

F'© _ f®-f(@
g'c)  g)-g@’

Proof. Let us consider the function h(x) defined as follows:



h(x) = f(x) — f(a) = L2LD 15(2) — g(a)].

gb)-g(a)

Then h(a) =0 and h(b) =0. Using the hypothesis, h(x) is
continuous in the closed interval [a, b] and differentiable in the open
interval (a, b). So h satisfies all the hypotheses of the Rolle’s theorem.
Hence, there exists a point ¢ € (a, b) such that h'(c) = 0. That is

(c) _ fb)-f(a) ., _
f 90 -9@ 8 =0

If g'(c) were zero, then f'(c) would be zero, contradicting the
hypothesis. Hence g'(¢) # 0 so that we have

@) _ fh)-f@
g'©  g)-g@’

Note 1. By taking g(x) = x in the above theorem, we obtain the
Lagrange’s Mean Value Theorem as given in Theorem 1.

The generalized Mean Value Theorem proved above can be
given in a slightly different form as follows.

Theorem 8. If f and g are each continuous on the closed interval
[a, b] and differentiable on the open interval (a, b), then there exists
a c in the open interval (a, b) such that

f'(c) [g(b) —g(@)] = g'(O[f (b) = f(D)].

Proof. Let F(x) = f(x)[g(b) —g(a)] —g(x) [f(b) — f(a)]. Then F is
continuous on the closed interval [a,b] and differentiable on the
open interval (a, b). Further, we can check easily that F(a) = F(b).
Hence, by Rolle’s theorem, there is a point ¢ in the open interval
(a,b) with F'(c) = 0. But F'(x) = f'(x)[g(b) —g(a)]—g'(x)[f (D) —
f(a)]. Hence

f'(©lgb) —g(@)]=g' ([f (b) = f(a)]

If g(a) # g(b) and g'(x) # 0 and f'(x) # O for all x € (a,b), we can
write the above expression in the form

fb)-f(@) _ f'(©)
9b)-g(@)  g'(®)’

Example 6. Find the value of ¢ in the generalized Mean Value
Theorem for the following pairs of functions:

() f(x) =+x g(x) =2x+1in[1,4].
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(i) f(x) =sinx, g(x) = cosx in [—g, 0].
D fb) = f(a) =1,g(b) —g(a) = 6
and F(x) = % g'(x) = 2.

f)-f@ _ ') 1

ves 1= L
db9@ gwSV e T Wr

Hence,

Hence, we get x = z. Sincez € (1,4), wegetc = z.

(ii) the given functions satisfy all the conditions of the generalized
Mean Value Theorem. Hence, we shall find the value of ¢ as follows:

f(b) = f(a) = 1and g(b) —g(a) = 1.

Also ;,—Exxi = — cos x. Using these we get, from
fM)-f@ _ ')

= ,cotx = —1.
gb)-g@) g'(x)

The solution of this equation in [— g, 0] is g . so ¢ should be equal to

T

8.4 TAYLOR'S THEOREM AND TAYLOR
SERIES

Taylor’s theorem is an extension of the Mean Value Theorem
of differential calculus. To obtain the Taylor series, we have to
consider the limit of the remainder after n terms in the Taylor’s
theorem. Though the different forms of the remainders can be
obtained from the generalized law of mean, we derive them in the
integral form, since the integral forms are easy to derive and handle.

First we shall give a brief motivation leading to the definition of
Taylor series. Suppose for all x in some interval I, the function f can
be expressed in the form

fx)=ay+a,(x—a)+a,(x—a)’+-+a,(x—a)* + - €Y)

where a € I. Then we say that f is expanded in powers of (x — a).
Since the series on the right side of (1) expresses f, the question
naturally arises whether the series on the right side of (1) converges
to f. Also if it converges to f, let us find whether we can express
ay, a4, ay, ... in terms of the properties of the function f. Assuming
that (1) can be differentiated term by term with respect to x
successively on both sides, we get



(i) f'(x) =a; + 2a,(x —a) + 3as(x —a)? + -
(i) f"(x) =2a, + 2.3 az(x —a) + 3.4a,(x — a)? + -
and after nth differentiation, we get

) =nla,+(m+1DM)...2a,,x—a)+®m+2)(n+
1) .3 apeo(x —a)? + - (iii)

If the substitution x = a on both sides (i), (ii), and (iii) are permitted,
then we get

ao = f(a),a; = f'(a),a, = 2! f"(a),..,f™(a) = nla,
f'(a) (x —

1!

x—a)*+ - (2)

Using the above relations, (1) can be written as f(a) +
(@) f™(a)

2! n!

a) + (x—a)*+-+

(2) is called the Taylor series of the function about x = a. When
a = 0, we get from (2) the following expansion

f'(0) £ (0) (0
fO) =fO)+—x+——x?+ - +——x"+ 3)

The expansion (3) of at x = 0 is called the Maclaurin series for f.

Note. For the expansion of f at x =a, f™(a) must exist for all
n =1,2,3,... The series may not converge for any x except x = a.

For investigating the Taylor series, first we shall consider the
partial sum of Taylor series with remainder which tends to zero for
large values of n yielding Taylor series. So we shall establish the
following theorem known as Taylor’s formula.

Theorem 1. (Taylor’s Formula). Let f be a real valued function on
[a,a + h] such that f®*V(x) exists for every x € [a,a + h] and
f™*D(x) is continuous on [a, a + h]. Then we have

f(x)=f(a)+#(x—a)+%(x—a)2.|_..._|_

Q)
f n'(a) (x—a)"+ Ry 1(x) forx € [a,a + h]

where R, (x) = ni L= on feD(@)dt.
Proof. First we shall establish that

if R, (x)= ni [ = om f@+D(t)dt, then
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Q)

R,(x) — Ry (x) = ! nfa) (x—a)*for x€[a,a+h],n=1,23,..
To see this, we have by integration by parts

Rner(x) = = [“(c = )" FO+D(t)de

= [ )] Z [fx =@ fO (bt
t = (n 1)|
—%ﬂ") () + Ry ().
It follows that
R (%) = Ryy1 () = 2222 £ () 1)

Using (1), we shall establish Taylor’s formula.

From the definition of R, (x), we get

t
R0 = [ f@de = £~ f(@)
Further from (1), we get
Ri() = Ry () = L2 (x - ),

Ry () — Ry (1) = 2 (x — a)2.

Proceeding in this manner, we get

M (q)
Ra(®) = R (1) = T2 (x — )"

Adding all the above equations, we obtain

~Ru1(0) = —f00) + f(@) + 22 (x - ) + 2 (x

2!
f(")(a) (x _ a)n

n!

From the above we get

f@ =f@+E2 0 -+ EL - a)? + -
a)" + Ry (%)

which completes the proof of the theorem.

_a)z + ...+

()



Note. The Taylor series of f around x = a need not converge in
general to f(x) at any point x in the neighbourhood of x = a. For
example consider the function f(x) = e~1/%* ifx # 0 and f(x) =0if
x = 0. We shall show in the next section that f has derivatives of all
orders at every point in the neighbourhood of x = 0 and for all n,
£™(0) = 0. The Taylor series around 0 is given by

f(0)+f—1(,°)x+f @424 . 4 PO (0) X™ + -

This series has sum zero. But the sum of the Taylor series at any
other point in the neighbourhood of x = 0 is different from zero.
Thus the series of the function does not converge to f(x) for any
point in the neighbourhood of x = 0 exceptatx = 0.

The following theorem gives the condition under which the Taylor
series of f converges to f(x).

Theorem 2. The Taylor series of f converges to f(x) at x = a if and
only if R,(x) - 0asn — oo.

Proof. From the Taylor’s formula, we get

F00) = £(@) + 552/ (@) + 552 (@) + -+ S F 0D (@) +
Rn(x) (1)

where R, (x) is the remainder after n terms.

Let

500 = f(@ + + 52 f1(@ + 55 (@) 4+ EE f ()
(2)

From (1) and (2), we get f(x) = s,(x) + R,(x) . The Taylor series
converges to f(x), then s,,(x) = f(x) as n — oo. This implies and is
implied by lim,,_,,, R,,(x) = 0, when

sn(x) = f(x) = Ry ().

Note. Further the function in the note under theorem 1 cannot be
represented by Taylor series about the origin. By Taylor’s theorem,
the expansion of the function about the origin,

f(0)+f—1(f’) x+f2(,°) x% 4 - 9 (0) x™ + R, (x)
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1
where R,(x) = e #*. Now R, (x) does not tend to zero as n — oo.
1
Hence, e »*> cannot be represented by Taylor series.

Since the convergence of the Taylor series depends upon the limit of
the remainder term R, ,;(x) as n = oo, we shall put the remainder
term in two different convenient forms due to Lagrange and Cauchy.

Theorem 3. (Taylor’s formula with Lagrange’s form of the
remainder)

Let f be a real valued function on [a, a + h] such that f™*(x) exists
for every x € [a,a + h] and f™*!is continuous on [a, a + h]. Then if
X € [a,a + h], there exists a number ¢ with a < ¢ < x such that

_ f'(@) (@ 2 f™(@)
fO=f@+— G- +=—x-a)*++—=(x -

2!
f(n+1)(a) _ n+1
(n+1)! G — )™

a)" +
The same result is true if h < 0. In that case, [a,a + h] is replaced by
[a+ h,a].

Proof. We shall apply the Second Mean Value Theorem of integral
calculus in the integral form of remainder. Then

Rup1(x) = — [X(x — " fF+D(t)dt

f(n+1)(c) (x—t)n+1
n! (n+1)

_ f(n+1)(c) x n _
= — Jix—t) dt=

for some c € [a, x]. Then we get from the above

f(n+1) (©)
(n+1)!

Ryi1(x) = (x— "

which completes the proof.

Corollary 1. Let x = a + h, then ¢ = a + 6h, where 0 < 6 < 1. Hence
making these substitutions in the theorem, we get

I " (n)
fla+h) =f(a)+f1(!a)h+f2(!a)h2+---+f n!(a)h”
f@*D(a + 6h) —
(n+1)!

Corollary 2. (Maclaurin’s Theorem with Lagrange’s Form of
Remainder ).



f(O) RO ENEAD SO PEENY il GO S
f(x)=f(0)+—= Xtttk o X

Proof. Taking a = 0 and h = x in Corollary 1 we obtain Maclaurin’s
theorem with Lagrange’s form of remainder in [0, x].

Theorem 4. (Taylor’s Formula with Cauchy Form of Remainder ).

Let f be a real valued function on [a,a + h] such that ™ (x)
exists for every x € [a,a+ h] and f™*D(x) is continuous on
[a,a + h]. Then if x € [a,a+ h] there exists a number ¢ with
a < ¢ < x such that

f@ =f@+22x—a) + L — )2 4+ LD —ayn 4

£ () (x—c)"
W(x — c)"(x — a).

The same result is true for h < 0 and [a,a + h] is replaced by
[a+ h,a].

Proof. Applying the second Mean Value Theorem of integral calculus
taking the integrand as a whole, we get

1 (n+1) _an x
Rpi1(x) = EL (x — )" FP+D (1) dt = f (CT)L!(x c) J "

for some c € [a,a + h], Thus we have

FrDE e = o

n!

Rppi(x) =

(x—a)
which completes the proof.

Corollary 1. Let x =a+ h. Then ¢ =a + 6h for some 0< 6 < 1.
Hence, there exists 8 with 0 < 8 < 1, such that

fla+h) =

fla )+f(a)h+f (a)hz_l_ M@ )(a) n 4 f@*(a+6n)

(n+1)!

(1 _ Q)nhn+1.

Corollary 2. (Maclaurin’s  Theorem with Cauchy Form of
Remainder).

f(O) PAONCENSEAP SO NP siste(C)
f(x) f(0)+ 21 — X0t + n! X"+ (n+1)!

H)nxn+1.
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Proof. Taking a = 0 and h = x in Corollary 1, we get Maclaurin’s
theorem with Cauchy’s form of remainder in [0, x].

Example: Write down Taylor formula with Lagrange form of
Remainder for f(x) =log(1+ x) abouta = 2 andn = 4.

The Taylor’s theorem about a = 2 forn = 4 is

’ 2 " 2 3) 2
Fo0 =@+ L2 -y 4 B 2 1 LB gy
4) (5)
+f 4!(2) (x —2)* +f5—!(c)(x -2)°
f () = log(1 + x), f'00 =50 () =
1
- (1+x)2
2 4 _ 6 —

f(3)(x) — el f( )(x) =T f(5)(x) =

24
(1+x)5 "

Hence the required expansion,

1 x=2) 1 (x —2)? i(x—Z)3

f@)=logd+ z.—r——5— * 373

6 (x—2)* 1 24

TR cpws 27
where c is between 2 and x in (—1, o).
8.5 POWER SERIES EXPANTION

Introduction

The terms of the series which we have examined so far (with the
exception of those considered in the chapter on Uniform Convergence)
were for the most part, determinate numbers. In such cases the series may
be characterized at having constant terms. This, however, was not
everywhere the case. In the geometric series); r™, for instance, the terms
only become determinate when the value of r is assigned. Our
investigation of the behavior of this series did not terminate with the
mere statement of the convergence or divergence, the result was: thee
series converges if |r| < 1, but diverges if [r| = 1. The solution thus
depends, as do the terms of the series, on the value of a quantity left
undetermined a variable. In this chapter we propose only to consider, in
detail within the scope of the present work, series whose generic term
has the form a,x", i.e., we shall consider series of the form



Ay + a1 X + ayx? + -+ apx™ + - = Yo apx™

Such series are called power series (in x) and the numbers a,,(dependent
on n but not on x) their coefficients.

Definition.

For x = 0, obviously every power series is convergent whatever be the
value of the coefficients. The most important fact about a power series is
that either:

I. it converges for no value of x other than the self-evident
point x = 0, we then say that it is nowhere convergent, e.g.,
Y. n"x™ converges for no value of x other than x = 0,
or

ii. it converges for all values of x, and is then called
everywhere convergent,

e.g.,
or
iii. (the general case) it converges for some values of x and
diverges for others the totality of points x for which it converges
is called its region of convergence.

xn

= N-DrE,

Thus, if ), a,x™ is a power series which does not converge everywhere
or nowhere, then a definite positive number R exists such that ), a,,x™
converges (indeed absolutely) for every |x| < R but diverges for every
|x| > R. The number R, which is associated with every power series, is
called the radius of convergence and the interval, | — R, R[, the interval
of convergence, of the given power series.

The behavior of a power series at |x| = R, depends entirely upon the
character of the sequence {a,} of its coefficients. For instance, both the

series
x" x™"
2w
converge when |x| < 1 and diverge when |x| > 1. When |x| = 1, the

first series converges while the second diverges at x = 1, and converges
at x = —1.

Properties of functions expressible as Power Series
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In the section, we shall derive some properties of the functions which can
be expressed in terms of power series, i. e., the functions of the form

f(x) = Xnzo anx™, or f(x) = ¥yoa"(x —a)™,

the former being the power series expansion of f(x) about the origin,
while the latter is about x = a. This can, however, be thought of in the
reverse direction also. In the interval of convergence, the power series
Ya,x™ or Y a,(x —a)™ has a definite sum f(x) for each x, and usually
different sum for a different x. In order to express this dependence on x,
we write

f(x) =Xanx™ or f(x) = Xan(x —a),
f(x) is then called the sum function of the series.

Before proceeding to the next theorem, let us understand an
important distinction between the intervals of absolute and of uniform
convergence. An interval of uniform convergence must include its end
points but the interval of absolute convergence need not.

Thus, if a power series converges absolute and uniformly for
|x| < R, we express this fact by saying that it converges absolutely in
| = R,R[, and uniformly in [-R + &, R — €], no matter which £ > 0 is
chosen; the latter interval may be replaced by [-R,,R,],R; < R.

Theorem 4. If a power series ), a,x™ converges for |x| < R, and let us
define a function

f() =X apx™, |x| <R,

then ), a,x™ converges uniformly on [—R + &, R — €], no matter which
€ < 0 is chosen, and that the function f is continuous and differentiable
on ] —R,R][, and

f'(x) = Znax" ", Ix| <R
Let € < 0 be any number given.
For |x| < R — &, we have
lanx™| < |an|(R — )"

But since Y a, (R — €)™, converges absolutely (every power
series converges absolutely within its interval of convergence),
therefore by Weierstrass’s M-test, the series ) a,x™ converges
uniformly on [-R + ¢, R — ¢].



n

Again, since very term of the series ), a,x™ is continuous and

differentiable on ] — R, R[, and ) a,x™ is uniformly convergent on
[—R + &, R — €], therefore its sum function f is also continuous and
differentiable on | — R, R|[.

Also, My 0 NG | Y™ = Timy o0 (n™) @y | = 1/R

-1

Hence, the differentiated series ) na,x™ "' is also a power

series and has the same radius of convergence R as ) a,x™.
Therefore, Y, na,x™ ! is uniformly convergentin [—R + &, R — &].

Hence, f'(x) = Y na,x™1,|x| <R.

Corollary. Under the hypothesis of the above theorem, f has
derivatives of all orders in] — R, R[, which are given by

0o

FmG) = Y n=1).. (0 - m+ Dagx™™

n=m

and in particular,
F™(0) =mlay, m=012,..

[Here, as usual, f™™ denotes the mth derivative of f for
m = 1,2,3, .., and f® means f.]

Let f(x) = ag + a;x + ayx? + ... +a,x" + ...

By the above theorem, f(x) is differentiable any number of
times. Let us differentiate m times.

o fO) = ay + 2a,x + 3a3x% + ... +nax™ T +
FP(x) = 2.1ax + 3.2a3x? + 4.3a,x% ... +n(n — Dax™ 2 + ...
f(g)(x) =3la;+432ax+ ... +n(n —1)(n — z)anxn—s + .

f(4)(x) =4la, +..+n(n—1D(n—-2)(n—3a,x"* + ...

M) =mla,+(m+1mim-1) .2.apx+ .. +nn-
D.n—m+Da,x™™ ™+ ...

=Y ann—1D..(n—m+ Da,x"™™
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Also
£M(0) =m!a,,
the other terms vanishing at x = 0.

Now, it appears natural to pose the question whether the
converse assertion is true. The problem can be stated follows.

Suppose a function f(x) is infinitely differentiable on an
interval | —R,R[, R # 0. We can formally construct the Taylor’s
series for this function:

O+ L0 4 L2y L0y

Now does this series converge on the interval | — R, R[, and will its
sum be equal to the function f in case it exists? It turns out that in
general the answer to the question is negative which can be
confirmed by the example of the function

_Je 2 forx+0
fx) = {0 forx =20

In fact it can be easily verified that the function is infinitely
differentiable through the x-axis and that at the origin , we have

fO)=£'(0)=f"(0) == fM(0)=0

Consequently, all the coefficients of the Taylor’s series of the function
are equal to zero. Thus the Taylor’s series converges on the entire x-
axis and its sum is identically equal to zero, whereas the function
takes on a zero value only at the origin and so we fail to express f as
a power series.

Abel’s Theorem

In this section we shall prove that for a power series which has a
given radius of convergence and convergent at an end-point of the
interval, the interval of uniform convergence extends up to and
includes that end-point. Moreover, in that case the sum function f is
continuous not only in | — R, R[, but also at the end point. This is
proved in Abel’s Theorem:

Theorem. Abel’s Theorem (First form).



n

If a power series );;—, a, x™ converges at the end point x = R of the

interval of convergence | — R, R[, then it is uniformly convergent in
the closed interval [0, R].

we shall show that under the assumptions of the theorem,
Cauchy’s criterion for uniform convergence is satisfied on the closed
interval [0, R]. This will imply the uniform convergence of the series
on [0, R].

Let Spp = anea R™ + ap R™? 4+ apyp, R™P, p=1,2,3,...
Then obviously Ape R =8,

n+2 _
an+2R —9n2 " “n1

An+p R™P = Snp — Snp-1
Let € > 0 be given.

Since the number ),,_,a, R" is convergent, therefore by Cauchy’s
General Principle of convergence, there exists an integer N such that
forn > N,

|Sn,q| <gforallg =1,23,.. (2)

Taking into account that

(%)n+p < (%)nﬂi—l <. < (%)n+1 < 1’ for 0 <x< R

and using equations (1) and (2), we have forn > N

|an+1 x4+ An+2 X2 4 An+p xn+p|

a1 (X n+1 e n+2 np (X n+p
Cln+1 R (_) + an+2 R (E) + b + an+p R (E)

-5 {®) -@ Jrse @ -G -
S (B ) s )

<lsul{R)" -G F s - Q) }
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n+1
=€ (%) <e.

foralln > N,p > 1 and forall x € [0, R].

Hence by Cauchy’s criterion , the series converges uniformly on
[0, R].

Theorem. Abel’s Theorem( Second form).

If ) a,x™be a power series with finite radius of convergence R,
and let

fx)=Ya,x",-R<x <R

If the series ), a,, R™ converges, then
limy_g_o f(x) = X a, R"
Let us first show that there is no loss of generality in taking R = 1.
Put x = Ry, so that
Ya, x"=Ya, R"y" =) b,y", where b, = a, R™
It is a power series with radius of convergence R’, where
, 1

RR=——7— =1

Iim|a, R™|1/n
Thus, it will suffice to prove the following:

Let Y.g° a, x™ be a power series with unit radius of convergence and
let

f)=XY7a,x", —-1<x<1

If the series Y a,, converges, then

LetS, =ay+a;+a,+-+a,,S_; =0,andlet };_,a, =S, then

m m m-—1
Zanx”=2(5n—5n_1)x”=25nx + S, x™ ZSnlx
n=0 n=0 n=0
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= 2?501 Sn x" —x an=05n—1 x4 Sm x™ = (1 - x) Z;‘Ln=_01 Sn x™ +

S x™.

For |x| < 1, whenm — oo, since S,, = S,and x™ — 0, we get
f)=A—-—x)YmoSpx™ for0<x <1 (D
Again, S, = S, for € > 0, there exists N such that
1S, — S| <§, foralln > N (2)
Also A-—0)Xrox"=1, |x|<1 3)
Hence, for n = N, we have, for 0 <x <1,
lf () =S| = [(1 —x) Xz Sn x™ — S| [using (1)]
= (1= x) XnZo(Sn — $) x| [using (3)]
S (1=2) INoolSa=SIx™+> (1 =) Tysy ¥ [using (2)]
< (1=x) EioolSn—Slx™ +3

But fora fixed N, (1 —x) YN_,|S, — S|x™ is a positive function of x,
having zero value at x = 1. Therefore, there exists & > 0, such that
forl—6<x<1,

(1—x) Xh=olSp—S|x™ < %
f(x) =S| <-+-=gwhen 1-6<x<1.
Hence, limy_;_of(x) =S5 =Y 0 an-

Corollary. If the series };(—1)"a,, converges, then

limy, 140 f(x) = 2(=D"ay .

Putting y = —x, and b,, = (—1)" a,,, we have

limy 140 f(X) =limy, 140X a, x™ =
limy 140 2(=D"ay (=x)"

=2y—>1—02bnyn = an
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Check your progress
1) State Roll’s Theorem
2) State Darboux Property
3) State mean value theorem for derivatives
4) If f and g be any two real valued differentiable functions on
[a,b] such that f'(x) =g'(x) for all x in [a,b]. Then?
f(x) —g(x) = c which is constant in [a, b].

8.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1) If f is continuous real-valued function defined on a bounded
and closed interval [a, b] with f(a) = f(b) = 0 and differentiable at
every point x in the open interval (a, b) such that f'(c) = 0.

2) If f has derivative at every point of the closed interval [a, b], then f’
takes on every value between f'(a) and f'(b).

3) If f is a continuous function on the closed and bounded
interval [a, b] and if f'(x) exists for all x in the open interval (a, b)

such that f'(c) = f)-f@

b-a
4) Let f and g be any two real valued differentiable functions on
[a, b] such that f'(x) =g'(x) for all x in [a, b]. Then f(x) —g(x) =c¢
which is constant in [a, b].

8.7 SUMMARY

¢ (Rolle’s theorem) If f is continuous real-valued
function defined on a bounded and closed interval [a,b] with
f(a) = f(b) =0 and differentiable at every point x in the open
interval (a, b) such that f'(c) = 0.

e (Darboux Property) If f has derivative at every point of the
closed interval [a, b], then f' takes on every value between f'(a) and f'(b).

e (Mean value theorem for derivatives) If f is a
continuous function on the closed and bounded interval [a, b] and if

f'(x) exists for all x in the open interval (a,b) such that f'(c) =
f(b)-f(a)

b-a
o If f is a real valued function defined on closed interval [a, b],
such that f'(x) = 0 for all x in the open interval (a,b), then f(x)

must be a constant in the open interval (a, b).




J If f and g are each continuous on the closed interval
[a,b] and differentiable on the open interval (a,b), then
there exists a c in the open interval (a, b) such that

f'(e) [8(b) —g(@)] =g'([f (b) - f(@)].

o (Taylor’s Formula) Let f be a real valued function on
[a,a + h] such that f™*V(x) exists for every x € [a,a + h]
and f™*D(x) is continuous on [a,a + h]. Then we have

9= 0 + 49 0 2
a)® + Ry41(x) forx € [a,a + h]
where R,;(x) = %f;(x — " FO+D () dt.
The Taylor series of f converges to f(x) at x = a if and only
if R,(x) > 0asn — oo.

J (Taylor’s formula with Lagrange’s form of the
remainder)

Let f be a real valued function on [a, a + h] such that f™*1(x)
exists for every x € [a,a + h] and f™*! is continuous on
[a,a + h]. Thenif x € [a,a + h], there exists a number ¢ with
a < ¢ < x such that

f(x):f(a)‘F% x—a)+f”2(!a)(x—a)2+...+

f™(a) @
T(x - a)” + W (x - Cl)n+1.

The same result is true if h < 0. In that case, [a,a + h] is
replaced by [a + h, a] .

. (Taylor’s Formula with Cauchy Form of Remainder ).
Let f be a real valued function on [a,a + h] such that
f+D(x) exists for every x € [a,a+ h] and f®**D(x) is
continuous on [a,a + h]. Then if x € [a,a + h] there exists a
number ¢ with a < ¢ < x such that

f0) =f(a)+fl(a)(x—a)+%(x_a)2_|_..._|_

1!

£™(a) £ () (x—c)"
n!a (x—a)™ + #(x — )" (x —a).

The same result is true for h <0 and [a,a+ h] is

replaced by [a + h, a].

e Abel’s Theorem (First form).
If a power series Y,_,a, x™ converges at the end point
x = R of the interval of convergence | — R,R[, then it is
uniformly convergent in the closed interval [0, R].

e Abel’s Theorem( Second form).
If Y a,x™be a power series with finite radius of
convergence R, and let
f(x)=Ya,x",-R<x<R
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If the series ), a, R™ converges, then
lim, g f(x) =Y. a, R".
8.8 KEYWORDS

e (Rolle’s theorem) If f is continuous real-valued
function defined on a bounded and closed interval [a,b] with
f(a) = f(b) =0 and differentiable at every point x in the open
interval (a, b) such that f'(c) = 0.

e (Darboux Property) If f has derivative at every point of the
closed interval [a, b], then f' takes on every value between f'(a) and f'(b).

e (Mean value theorem for derivatives) If f is a
continuous function on the closed and bounded interval [a, b] and if
f'(x) exists for all x in the open interval (a,b) such that f'(c) =

f)-f(a)
b—a
8.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES
1) Give the geometrical interpretation of the mean value
theorem.

2) Show that the real valued function f(x) = x? + 2 defined on
[1,3] is strictly increasing.
3) Show that ilog(l + x) decreases as x increases from 0 to oo.

4) Show that x* — 3x? + 2x + 3 is monotonically increasing in
every interval.
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9.0 INTRODUCTION

The Riemann integration is a basic concept in mathematical
analysis, since it relates to boundedness, continuity and
differentiability. In this chapter, we shall give a detailed and rigorous
account of Riemann integration, proving the basic property of
integration as anti-derivative which comes out as the fundamental
theorem of calculus. In this chapter, we shall consider only the real
valued function.

9.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand what is meant by Riemann Integral
® Discuss Daurbox’s theorem

e Discuss the Conditions for Integrability
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9.2 DEFINITION OF THE RIEMANN
INTERGRAL

Definition 1. Let I be a bounded and closed interval of . Let f be a
bounded real valued function defined on I. Let us define the
following

M[f;1] = lubye f(x), m[f;I] = glbye; f(x).

Definition 2. A partition P of [a, b] is a finite subset{xg, x1, X3, ... , X, }
of [a,b] suchthatP: a =xq <x; < %, < ... < x, = b.

The points x,, x4, x5, ... , x, are called the points of sub-division of
[a, b]. The closed interval

I = [x9,x4], I = [x1,%2], oo, Iy = [xp-1, %]

are called the component intervals of [a, b]. For the partition P, we
have in the above notation

MIf; 11 = lub £(), mifs] = glb f)

x€l
wherek =1,2,3,...,n.
From the definition of partition we have
m(f; Il < ml[f; I,] < M[f; I;] < M[f; I] for each k.

Definition 3. Let f be a bounded function on the closed bounded
interval [a, b] and let P be any partition of [a, b]. We define the upper
sum of f corresponding to the partition P as

ULSf; Pl = Xk=1 MIf5 L] |-
Similarly, the lower sum of f is defined as

LIf; Pl = Xg=amlf5 Ll |-
Since m[f; I,] < M|[f; I] always, we have

L[f;P] < U[f;P]. ey

Note. Geometrically, U[f; P] is the sum of the areas of circumscribed
rectangles and L (f; P) is the sum of the areas of inscribed rectangles
of the curve y = f(x) corresponding to the partition P, if f is a
continuous and non-negative function on [a, b].



v

L[f; P]

v

a xz xk b

Ulf; P]

From the definition of partition, we have the following property.

9.3 DAURBBOUX’S THEOREM

Theorem 1. For any partition P of [a, b], we have

m[f; P1(b — a) < L[f; P] < U[f; P] < M[f; P](b — a).
Proof. Foreachk = 1, 2,3, ..., n, we have
m(f; 1] || < mlf; L] | < MIf; L] | < MIf; 1] |1 ].

Hence, [a, b] for the partition P, we get
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m[f; 1] 221:1 || < Z?:ﬂn[f} Ik] || < Z§=1M[f} Ik] || <
M[f; 1] Xi=q k.

From this we get
mlf;11(b — a) < LIf; P] < U[f; P] < MIf;I](b — a).

From the above inequalities, we conclude that the set of all lower
sums L[f; P] is bounded above for every P and an upper bound for
the lower sums is the real number M[f; P](b — ). Similarly, U[f; P]
is bounded below for every P and a lower bound is the real number

m[f; P](b — a).

Definition 4. Let f be a bounded function on the closed and bounded
interval [a, b]. The upper integral of f over [a, b] is defined as

[ f()dx = glbp U[f; P] ©)

where glb is taken over all possible partitions P of [a, b]. Similarly
the lower integral of f over [a, b] is defined as

b
J_,f(x)dx = lubp L[f; P] 3)
where lub is taken over all partitions P of [a, b].

For simplicity the upper and lower integrals of f in [a, b] are denoted
-b b
by [, fand [ f.

Since the set of all lower sums L[f; P] for all possible partitions
is bounded above by Theorem 1, the lower integral exists. Similarly,
the set of all upper sums U|[f;P] is bounded below for every
partition, the upper integral exists. Further from the inequality (1),

we have Lr<l’f 4)

Definition 5. If f is a bounded function on the closed and bounded
interval [a, b], f is said to be Riemann integrable on [a, b] provided

b -b
=11
The common value of the upper and lower integrals is denoted by
f;f or fff(x)dx and called the Riemann integral of f with respect
to x in [a, b].

Example 1. Each constant function f(x) = c is Riemann integrable on
any interval [a, b].



LetPra=xp <x; < X9 o <Xpuq < Xpp oo < X1 <X, =bbea
partition of [a, b]. Then

ULFiPL = ) MIfilid el = ) cllil = c(b—a)

LfPL = ) mifilid Il = ) el = c(b—a)

Since P is arbitrary, it follows that U[f;P] = L[f;P] = c(b — a) for
every partition P of [a, b] and fa_bf =c(b—a)and f_baf =c(b—a)

are equal.
Thus f is Riemann integrable and f;f =c(b — a).

Example 2. Let f(x) =x (0<x<1). Let ¢ be the partition
1 2 3

{O’Z’Z’Z’ 1} of [0, 1]. Compute U[f; o] and L[f; o].

For the given partition o, the component intervals of [0, 1] are

1_[01] 1_[12 1_[23 1_[31]
1 — !4! 2_414) 3_4)4F 4 — 4!
1 2 3
M[fi11]=z’ M[fi12]=zl M[f213]=zl M[f114]=1
1 2 3
m[fi L]=0, m[fi L]=-—, m[fi 13] = m[fi L] =~
4 4 4
Hence, let us find U|[f, o] and L[f, o].
Now,  U[f;0] = Yk=1 MIf; L] ||
_1 l_|_E l+§_l+1 1
4 4 4 4 4 4 4
B 1+ 2+ 3+4_ 10_5
16 16 16 16 16 8
4
Lifiol = ) mif; 5l I
k=1
_1 O+1 1+2 1+3 1
T4 474 474 474
=O_|_i+ i+ iz iz_
16 16 16 16

Hence, we get [f; o] = Z, Llf;o] = =.
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Example 3. Let f(x) = x2. For each n € N, let g,, be the partition
{0,%, %, ...,%} of [0,1]. Compute lim,_ U[f; 0] and
lim, o L[f; 0] .

Now the component intervals of the partition P are,

T R Y . R L

n n'n n'n n 'n
Mifh = MinRl=(2)2, minn = (3)°
M[f;1,] = (%) z2 .., MIf;1,] = (g) 2

mifinl =0, mifnl=(0)?,  mirkl=(5)?

m(f; 1] = (;)2 m(f; L] = (n;l)z
o U= 2 ()7 24 2 ()02
= 1+ 22+ 32+ ..+n2.

1 n(n+1)(2n+1)

Ulf;on] = — and hence, lim,,_,., U[f; 0,] = =

1
n3 3’

1 /N, 1 /2,1 3\, 1 n—1y, 1
L[f;an]=0.—+(—>2.—+ (—)2.—+ (—)2.—+---+( )2.—
n n n n n n n n n

= [+ 22+ 32+ .+ (n—1)?]

1

and hence, lim,_ L[f; 0,,] = p

_ 1 [W}
n3 6
The partition P* of [a, b] is called a refinement of P, if each point of
subdivision x; of P is also a point of subdivision of P* . The
partition P* is called the common refinement of the partitions P;
and P,, if P* is the refinement of both P; and P,. Every pair of
partitions P; and P, has common refinement. For example
P* = P, U P, consisting of the points of P, and P, is a common
refinement of both P; and P,. The length of the largest of the
component intervals of the partition is denoted by ||P||. That is
||P|| = MaXq<x<n(Xx — Xx—1). Using these we have the following

theorem.



Theorem 2. Let f be bounded function on [a, b]. Then every upper
sum for f is greater than or equal to every lower sum for f. That is, if
P; and P, are any two partitions of [a, b], then U[f; P;] = L[f; P,].

Proof. To prove this, first we shall establish that if P;* is any
refinement of P; and P," is a refinement of P,, then

Ulf; P11 2 U[f; "] and L[f; P,] = L[f; P, ]. €]

That is, any refinement of the given partition decreases the upper
sum and increases the lower sum. It is enough if we prove the case
where P;* is obtained from P; by adding only one point of
subdivisions. We suppose that P has component intervals
L, I, Iy and P;” has component intervals.
L, I,..L" ", .., I, where I, = I, UIL,"" and |I,,| = |I,"| + |I.""].
since I," cl,, we have M[f;I,"] < M[f;1;] and M[f;[,"*] <
M([f; I ]-

Hence we have,

n

Ulf; Pl = MIf; L) |G| + MIF L1 AL + MIf L1
j*k

j=1j%

IA

?zl,jikM[f; I]] |IJ| + MI[f; L] (L5 + 117D
< U[f; P.].

Hence, we have U[f;P;"] < U[f; P,].

In a similar manner , we can show that L[f; P,] < L[f; P,"].

Now since P; U P, is a refinement of both P; and P,, we have from
the above

Ulf; P1] = U[f; P, U P,] = L[f; Py U P,] = L[f; P].

Note. From the theorem, we get glbU[f;P;] = lubL[f;P;]
where glb and lub are both taken over all partitions of [a, b].

For, if P, is any partition of [a, b], then from the theorem,
L[f; P;] is the lower bound for the set of all upper sums U[f; P;].
Hence we get L[f;P,] < glb U[f;P;] for every partition P,. But
b U[f; P,], is the upper bound for the set of all lower sums L[f; P,].
Hence, we get
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lub L[f; P,] < glb U[f; P,].

Using the above inequality, we get immediately from the definition
of upper and lower integrals

12 feodx < [ FGodx.

9.4 CONDITIONS FOR INTEGRABILITY

Theorem 3. Let f be a bounded function on the closed bounded
interval [a, b]. Then f is Riemann integrable if and only if for every
€ > 0, there exists a subdivision P of [a, b] such that

Ulf;P] — L[f;P] < e.

Proof. First suppose that for the given & > 0, there exists a
partition P such that (1) is true. Then since

[ f@)dx < U[f; Pland [° f(x)dx = LIf; P].
Hence, using these two in (1), we get fa_bf(x)dx — f_baf(x)dx <e.

Since € > 0 is arbitrary, we get from the above
-b b

J f(x)dx < J f(x)dx
a —-a

From the previous note, we get f_ba flx)dx < fa_b f(x)dx.

Hence we have from (2) and (3), f_baf(x)dx = fa_bf(x)dx, so that

f is Riemann integrable in [a, b].

Conversely, suppose f is Riemann integrable in [a, b].
-b b

Then fa f = glbp U[f; P1] = lubp L[f; P,] :f_af

Given £ > 0, from the definition of glb, we can choose a partition P;
such that

UL P < [ F+5.

In the same manner, we can choose a partition P, such that

LI Pl > [7 f 5.



Using the fact that f is Riemann integrable, we get

L[fiP2]+§>U[f5P1] -

£
S -
Now, considering the common partition of P; and P,

&

LIf;PLU P +- > UIf;PLUP,] —-.

Now, considering P; U P, as single partition P, we get
Ulf;P]—L[f;P] <e.
This completes the proof of the theorem.

The following theorems illustrate the use of the above
criterion of integrability for a bounded function in a closed and
bounded interval.

9.5 INTEGRABILITY OF CONTINUOUS &
MONOTONIC FUNCTIONS

Theorem 4. Every continuous function on [a, b] is Riemann
integrable.

Proof. Suppose f is continuous on [a, b] and let € > 0 be given. We
shall show that corresponding to this € > 0, there exists a partition P
for [a, b] such that

Ulf; P] — L[f;P] < e.
By the uniform continuity of f on [a, b], there is a § > 0 such that

f () = f@)| < ;—, whenever x,y € [a,b] with |x —y| <.

Let P be any partition of [a, b] with [|P|| < 8. By the property of
continuous function on the closed interval [x;_4,x;], there exists
points x;. and x;"" € [xy_1, xx] such that

f(xx') = My and (x;"") = my, .
Now, |x," — xi""| < |xg, xp—1| = |Ix| < |IP]] < 6.

Hence, M, — my, = |f(x,") — f(x")| < ﬁfork =12, ..,n

Hence, U[f; P] — L[f; P] = Xp=1[MIf; L] — mlf; L]] | |

= Y= lf Q") = FOa DI |
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&

£ yn — % (h_) =
S k=1 |1k|—b_a(b a)=c¢.
Hence, f is Riemann integrable on [a, b].

Theorem 5. If f is monotone on [q, b], then it is Riemann- integrable
on [a, b].

Proof. If f is constant on [a, b], then it is Riemann integrable on [a, b]
by Example 1.

Since we can give a similar proof for monotonic decreasing case,
we assume that f is monotonic increasing on [a, b] and f(a) < f(b).
Let € > 0 be given. We shall show that there exists a partition P on
[a, b] for which U[f; P] — L[f; P] < €. Let P be any partition on [a, b]

. & . — .
with ||P|| < OS Then since f is increasing on [a, b], we have
M[f; L] = f(xx) and m[f; ;] = f(xx_q) fork =1,2,..,n
Hence,  U[f;P] = L[f; P] = X1 M[f; li]llic| = X=a mf; L] |

= Yro1[MIf; I — mIfs L] L
= Yi=1lf () — f e D |

<7 f(a)zk 1 G — f Oee—1)]

= s [f () = f )] =

Hence, by Theorem 3, f is Riemann integrable on [a, b].

Check your progress
1) Define Riemann integrable
2) Provide the conditions for integrability
3) What is the integrability of continuous function?
4) What is the integrability of the monotone function?

9.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1) If f is a bounded function on the closed and bounded
interval [a, b], f is said to be Riemann integrable on [a, b] provided

Lr=1"F




The common value of the upper and lower integrals is denoted by

f: f or f: f(x)dx and called the Riemann integral of f with respect to

x in [a, b].

2)
[a, b].

Let f be a bounded function on the closed bounded interval
Then f is Riemann integrable if and only if for every € > 0,

there exists a subdivision P of [a, b] such that

3)

Ulf; P] — L[f; P] < e.
Every continuous function on [a, b] is Riemann integrable.

4) If f is monotone on [a,b], then it is Riemann- integrable on
[a, b].

9.7

SUMMARY

Let I be a bounded and closed interval of . Let f be a
bounded real valued function defined on I. Let us define the

following

MIf;1] = lub,g f(x), m[f;I] = glbye f(X).
A partition P of [a, b] is a finite subset{xy, X1, x5, ... , x,} of
[a,b] suchthatP: a = x5 <x; < %, < ...< x, =Db.
The points xg,x1, x5, ..., x, are called the points of sub-
division of [a, b]. The closed interval

I = [x0, %], I; =[xy, %3], s Iy = [xn—1, %3]

are called the component intervals of [a, b]. For the partition
P, we have in the above notation

MIfi 1= Wb fGo, mifil] = glb f()

x€l
wherek =1,2,3, ..., n.
From the definition of partition we have
m[f; Il < m[f; I,] < M[f; I,] < M[f; I] for each k.

Let f be a bounded function on the closed bounded interval
[a, b] and let P be any partition of [a, b]. We define the upper
sum of f corresponding to the partition P as

ULSf; Pl = Xk=1 MIf5 L] ||
Similarly, the lower sum of f is defined as

LIf; P = Sioymlf; L] 1hel:
LIf; P] < UIf; P].
Let f be a bounded function on the closed and bounded
interval [a, b]. The upper integral of f over [a, b] is defined as

-b
J, f()dx = glbp U[f; P] (2)
where glb is taken over all possible partitions P of [a,b].
Similarly the lower integral of f over [a, b] is defined as

[° f(x)dx = lubp L[f; P] 3)

where lub is taken over all partitions P of [a, b].
e If f is a bounded function on the closed and bounded
interval [a, b], f is said to be Riemann integrable on [a, b]
provided

Lr=0"F
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The common value of the upper and lower integrals is denoted by
f; f or f: f(x)dx and called the Riemann integral of f with respect
tox in [a, b].

e Let f be a bounded function on the closed bounded
interval [a,b]. Then f is Riemann integrable if and only if for every
€ > 0, there exists a subdivision P of [a, b] such that

Ulf;P1=LIf;P] <e.

e Every continuous function on [a, b] is Riemann
integrable.

o If f is monotone on [a, b], then it is Riemann- integrable
on [a, b].

9.8 KEYWORDS

o If f is a bounded function on the closed and bounded
interval [a, b], f is said to be Riemann integrable on [a, b] provided

b -b
oof =11
The common value of the upper and lower integrals is denoted by
f: f or f; f(x)dx and called the Riemann integral of f with respect
to x in [a, b].

9.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1)Find whether f is Riemann integrable on [0,1] and justify your
answers.

D) =—

X+3
if) £(x) = |x — |
iii) f(x) = [x]
2) If f is continuous on [0,1], prove that lim,,_, Y r=1 f (E) = fol f.
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10.7 Summary
10.8 Keywords
10.9 Self Assessment Questions and Exercises

10.10 Further Readings

10.0 INTRODUCTION

All the different conditions we have stated in the previous
discussion for Riemann integrability of bounded functions on a bounded
and closed interval [a, b] are only sufficient. In this section, we shall first
explain how the concept of continuity is related to the Reimann-
integrability and characteristic the Reimann integrable functions by using
functions continuous almost everywhere. For such a characterization, we
shall first introduce the concept of a set of measure zero. If [ is an interval
of real numbers, let || denote the length of the interval.

10.1 OBJECTIVES

After going through this unit, you will be able to:
e Discuss existence of Riemann integral
e Discuss properties of the Riemann Integral

e Discuss the Continuity & Derivability of integral functions

10.2 EXISTENCE OF RIEMANN INTEGRAL

Defenition 1. A subset E of R is said to be of measure zero if
for each € > 0, there exists a finite or countable number of open
intervals (I,) such that E ¢ Uy~ I, and X, |I,| < €.
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Note. Hence E is a set of measure zero, if given € > 0, E can be
covered by a union of open intervals whose total length is less than
¢. It is easy to see that a set consisting of one point of measure zero.

The following theorems give some properties of sets of
measure zero which we need in our discussion.

Theorem 1. If each of E}, E,, ..., of R is of measure zero, then U;-; E,
is also of measure zero.

Proof. Let us fix € > 0. Since E,, is of measure zero, for each positive
integer n, there exists a finite or a countable number of open

intervals which cover E,, and whose total length is less than zin Then

the union of all such open intervals for all n covers U,-; E,and the
length of all these countably many intervals is less than

bt <
—_— — cee — e g.
2 22 2n

Hence, we get Uy~ E,, is a set of measure zero.
Corollary. Every countable set of R is a set of measure zero.

This follows by using the fact that one point sets are of
measure zero in the theorem

Definition 2. If a property is true on [a, b] expect on a set of measure
zero, then the property is said to be true almost everywhere on [a, b]
or for Imost all points of [a, b]. That is, the set of points of [a, b] at
which the property is not true is a set of measure zero.

Thus if f is continuous almost everywhere in [a, b], then the
set of points E of [a,b] at which f is not continuous is a set of
measure zero.

Examplel. If A is not of measure zero, if B C A, and if B is of measure
zero, prove that A — B is not of measure zero.

If A — B is not of measure zero, then let it be of measure zero.
Now A = (A — B) U B. By hypothesis B is of measure zero and by
assumption (A — B) is of measure zero. Since union of a finite
number of sets of measure zero is of measure zero. A = (A—B)UB
is a set of measure zero contradicting that A is not a set of measure
zero. Hence A — B is not a set of measure zero.

Example 2. If a < b, prove that [a, b] cannot be covered by a finite
number of open intervals whose total length is less than b — a.



Since [a,b] is a bounded and closed interval, every open
covering of [a, b] contains a finite subcovering. Hence, it is enough if
we prove that for a finite collection of open intervals covering [a, b],
Zfl=1|1n| >b-—a.

Since a is contained in UX_, I,,, there must be one of the I,,’s
which contains a. Let this be the interval (a;,b;). We have
a; < a < b;. If by <b, then b; € [a,b] and since b; € [a, b], there
must be an interval (a,, b,) in the collection (I,) such that
b € (a,, by). Thatis a, < b; < b,. Proceeding in this manner, we get
a sequence (aq, by), ..., (ay, by) ... from the collection (I;) such that
a; < bj_1 <b;.

Since (I,) is a finite collection, the above process must
terminate with some interval (ag,b,). But it ends only when
b € (ay, by). Thatis a, < a < by. Thus

5:1 |In| > 2%:1 |(an'bn)|
= (b — ax) + (bg—1 — ag—1) + -+ (by — ay)

= by — (ay — bx—1) — (Ag—1 — bg—3) — - —
(ay —by) —ay > by — a,.

Since a; < b;_,. But by > b and a; < a and so by, — a; > b — a, from
which we have YX_. |I,| > (b — a).

Example 3. If a < b, prove that (a, b) is not of measure zero.
Now from Example 2, [a, b] is not of measure zero.

But {a, b} € [a, b] is of measure zero. By Example 1, [a, b] — {a, b} =
(a, b) is not of measure zero.

Example 4. Prove the following:

i.  The set of rational numbers Q is of measure 0.

ii.  The set of all irrational numbers is not of measure zero.
Since Q is a countable set, the set Q of all rational number is of
measure zero follows by Corollary 1 of Theorem 1.

The set R of all real numbers is not of measure zero. Q € R is
of measure zero. Hence, Q¢ = R — Q is not of measure zero by
Example 1.
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Theorem 2. Let f be a bounded function on the closed and bounded
interval [a,b]. Then f is Riemann integrable if and only if f is
continuous at almost every pointin [a, b].

Proof. Let us first suppose that f is Riemann integrable in [a, b].
Then we have to show that the set D of points in [a, b] at which f is
not continuous is of measure zero. Now by Theorem 1 of 5.9, x € D if
and only if w[f; x] > 0. Hence let D = U;~, D,, where each D,, is the

set of all points x in [a, b] such that w[f; x] > % To prove that D is of

measure zero, it is enough if we show that each D,, is of measure
ZEro.

Let m be fixed. Since f is Riemann integrable, given ¢ > 0
there exists a partition P of [a, b] such that

Ulf; P] — L[f; P] <%-

Hence, if I3, I,, ..., I, are the closed component interval of P, we have

D olf bl el = Y MIF LI = ) mifs L]
k=1 k=1 k=1

=U[f;P] - L[f;P] < %by Hypothesis.
Hence, we have from the above

Tiem1 O ] il < 5 v (1)

Now let D,,, = D;, U D;;, where Dy, is the set of points of D,, that are
the points of the partition and Dy, = D — Dy,. Since there are only
finite number of point of the partition in D),, we see that
D;, © ] UJ, U ..U ], where J; s are the open subintervals such that

€
Uil + 12l + -+ | <5
But if x € D,;, then x is an interior point of some I;. Hence, we have
1
olf; L] 2 wlf;x] > —.

If Iy, I,, ..., Iy, are those component intervals of P which contain a
point of Dy, in their interior, we have



= ([, | + [Ty | + -+ |1, ) < [f3 T | ey | + -+ + @5 T ] i, |

Hence, we have from (1),
€
(I + Il + -+ 1, ) < 5

Since Dy, is covered by the interiors of I , I, ..., I, and since Dy, is
covered by Ji,Jz,...,Jp, it follows that D,, is covered by a finite
number of intervals, sum of whose lengths is less than ¢.

Hence, D,,, = D;, U D}, is a set of measure zero.
To prove the converse, we need the following lemma.

Lemma. If w[f; x] < a for each x in a closed bounded interval J, then
there o of J such that

Ulf;0]l = LIf;0] < al]] e (2)

Proof. For each x € J, there is an open interval I, containing x such
that w[f; x] < a. Since ] is compact, a finite number of these I, will
cover J. Let o be the set of end points of these I,.. If I}, 1, ..., ,, are the
component intervals of g, we have w[f;x] < a for k = 1,2, ...,n and
hence (2) follows easily.

Now let us assume that f is continuous at almost every point
of [a,b], we have to show that fis Riemann integrable on [a, b].

. e b-1
Given € > 0, choose aa positive integer m such that —< 2

If D, is defined as the first part of the proof D,, is of measure
zero. Hence D,, € U,-; I, where each I,, is an open subinterval of
[a, b]. Since w[f; [a, b]] > 0, let us take

- £
; | < Zw[f; [a, b]]'

But we know that D,, is closed in R. Hence D,, is a closed subset of
[a, b] and is thus compact. Therefore, a finite number of intervals of

the (1,) will cover D,,,. Letthembe I, , I,,, ..., I, -

Now [a, b] —(In1 Ul U ...Ulnk) is a union of closed intervals

]1,]2, "'ij'

Thatis, [a,b] = (I, Uln, U ..Ul UJ; UJs ... ]p)
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Since no interval J;(i = 1, 2, ..., p) contains a point of D,,, there exists
(by the lemma) a subdivision g; of J; such that

| A
U[f' Ui] - L[f! O-i] < ?

Now define a partition P of [a,b] as P = 0, U0, U ...U g;,. Then the
component intervals of P are the component intervals of o4, g5, ..., Op
together with I, I, .., I,. Hence we have U[f;o] - L[f;0] =

L ULf5 6] = LIF 03] + S5y [MIFs 1] = mf L] U

1i I+zk:w[f Ll

5

Hence, by Theorem 3 of 8.1., f is Riemann integrable on [a, b]. So the
proof of the theorem is complete.

Example 5. Determine whether the following functions are Riemann
integrable

i f(x) = siniforO <x <1landf(0) =2
i, f(x)=n if x =% when n=1,23.., and f(x) =0
otherwise for x € [0,1].
iii. f(x) = x?%ifxisrational and f(x) = 0 if x is irrational
iv. Let f(x)=0 for x in [0,1] and f(x)=1 for
1 2
X € {O'E'E' ,}

(i) 0 is the only point of discontinuity of f in [0,1]. Hence, f is
continuous almost everywhere in [0,1]. Son it is Riemann integrable
in [0,1].

(ii) The function is continuous in [0,1] except at the points

x = {0,1,%%, } Since the point of discontinuous are countable and

any countable set is a set of measure zero, the function is continuous
almost everywhere on [0,1]. Therefore, f is Riemann integrable.



(iii) Every point of [0,1] is a point of discontinuity of f.
Hence, f is discontinuous throughout the interval
[0,1]. So f is not Riemann integrable on [0,1].

(iv) From the definition, f is continuous everywhere
. 1 2 3 . :
except at the points {O,—,—,—,...} which is

10°10° 10

countable and so that function is continuous almost
everywhere. Hence, f is Riemann integrable on [0,1].

Example 6. Find w[f’; 0] for the function f defined on [0,1] as follows:
flx) = Si%ifx #0and f(x) =1ifx = 0.

In the neighbourhood of x =0, f(x) =0 and by hypothesis
f(0) = 1. Hence w([f; 0] = 0.

Example 7. Let C be an arbitrary countable infinite subset of [0,1].
Find a function f defined and bounded on [0,1] such that D(f) = C.
Is f Riemann integrable on [0,1]?

Let C = {xq, x5, ...} € [0,1].
Let us define the function f as follows:
flx) = %ifx = x, and f(x) = 0 otherwise.

The function is continuous in [0,1] except at the set of points
{x1, x5, x5, ... } which is a set of measure zero. Hence, by the Theorem
2, f is integrable on [0,1].

10.2 PROPERTIES OF THE RIEMANN
INTEGRAL

In this section, we shall consider the Riemann integrable
functions on a bounded closed interval [a, b] and establish some of
their properties. We shall denote the set of all Riemann integrable
functions on [a, b] by R][a, b].

Theorem 1. If f is Riemann integrable on [a, b] and c is any real
number, then c¢f is Riemann integrable and

Lbcf=cfabf.
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Proof 1f ¢ = 0, the theorem is obvious. Since cf is continuous almost
NOTES everywhere on [a, b], c¢f is Riemann integrable on [a, b]. If I is any
subinterval of [a, b] and ¢ > 0,

Mcf,I] = cM|[f;1].
Hence, for any partition P of [a, b] we get

Ulcf; P] = cUI[f; P].
Therefore, taking glb on both sides of the above,

fabcf=c fabf,wherec>0. ................. (1)

Hence, we have proved the theorem when ¢ > 0.

For any interval I, we have M[—f;I] = —m|[f;I]. Hence,

b
f (~f) = glb U[~f,P] = glb — L[f, P]

b
=—lub L[f,P] = —jf.

From this, we have

[en=-]r @

This completes the proof of the theorem.

Theorem 2. If f € R[a, b] and g € R[a, b], then f + g € R[a, b] and

b

b b
[¢+o=[r+]s

a

Self-Instructional material




Proof. By Theorem, the sets D(f) and D(g) of points of
discontinuities of f and g are both of measure zero. By Theorem, the
set D(f) U D(g) is of measure zero.

If x € [a,b] —[D(f) UD(g)], then f,g and hence f + g are
continuous at x. Thus f + g is continuous at almost every point in
[a,b] and so f + g € R[a, b].

If J is any interval contained in [a, b] and if y € J, we have

f)+g9@) < M[f;]]+Mlg;]].

For any partition P of [a,b], we have by using the above
results

[+ <uir+gp)
’ < U[f;P] + Ulg; P] I ¢ )|

But given € > 0, there is a partition P; of [a, b] such that

ULF; Py <L[f;P1]+§<ff+§.

Also there is a subdivision P, of [a, b] such that
b
af

If P = P, U P,, then P is a refinement of P, and P,. So we get

Ulg; P,] < Llg; P,] +

Nlm
N_Im

b b

& &

Ulf; P] <jf+§,U[g;P] <Jg+§-
a a

From (1), we get f:(f +9) < f;f + f:g + &.

Since € > 0 is arbitrary, this proves that
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L+ <[ f+[g N ¢)

Since f and g were any Riemann integrable functions, we can
substitute - f, —g for f and g in (2).

Hence, [ (—f — 9) < [, (=) + [, (=9).

By using the above theorem we have

b

_f(f+g)<— ff+fg ST ()

a

Now multiply both sides of (3) by —1. This reserves the inequality
and so

b

f(f+g)2ff+jg et en e e e e e (4)

a

Hence, the theorem follows from (2) and (4).

Theorem 3. If f € R[a,b] and if f(x) = 0 almost everywhere on

[a, b], then
b
[r=0
a

We have

b
mmnw—@sffSanw—@.

If f(x) > 0 for every x € [a, b], then m[f;I] > 0. Using this in the
above inequality, we get

b

sza

a

From the above theorem, we have the following corollaries.



Corollary 1. f € R[a,b] and g € R[a, b] and if f(x) < g(x) almost
everywhere on [a, b], then fabf < fabg

Proof. By the Theorems 1 and 2, the functions -f and g — f are
Riemann integrable. Since g(x) — f(x) = 0 by hypothesis, we have
by the above Theorems 1,2 and 3,

b b

osfb(g—f)=f[g+(—f>]=fg+fb(—f>=fbg—fbf.

a
: b b
From this, we have [ f < [ ' g.

Corollary 2.If f € R[a, b], then |f| € R[a, b] and we have

f f|f|

Proof. Since |f| is continuous at every point where |f| € R[a, b].

Since f(x) < |f(x)| = |f|(x) for all x € [a, b], from Corollary

1 above, we get
b b
ff < flfl. SR @ §)
a a

Since -f(x) <|f|(x) for all x € [a,b], we have again using
Corollary1 above,

b b
—ffs flfl. SR )|

From (1) and (2), we get

b b
[ r|= [

Note. In the following, we shall give the proof of the first part of the
above Corollary 2 by using the definition of Riemann integration.
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Theorem 4. If f € R[a, b], then |f| € R[a, b].

Proof. Since f is bounded in [a, b], |f(x)| < k for every x € [a, b] so
that |f| is bounded. Let € > 0 be given and let P = a = xy < x; <
v Xp_q < X < -+ X, = b be apartition of [a, b] and let x, y € I.

Then we have the following
ILfCON = I < f () = FOI < MIf; L] — mf; I ]
As x,y vary over I, we have from above,
MIIf1, L] = mllf, L] < MIf; L] — m[f; I ]
This implies

U[|f|;1k] - L[|f|;1k]
< Ulf; 1] — LIf; I] cenee e eee een e e e (1)

Since f € R[a,b], we get U[f; ;] — L[f;I;] < € for every
e>0.

Using (1) in (2), we get U[If[; L] — LIIf|; k] <e.
Hence, |f| € R[a, b] .

Note. The converse of the above theorem is not true and it is shown
by the following example.

Let f be a real valued function defined on [a, b] by

Flx) = { 1 when x is rational
—1 when x is irrational.

For any partition of [a, b]. We can check easily

[ f=@-aand [} f=-0b-a).

This implies that f is not Riemann integrable in [a, b]. But |f(x)| = 1
for every x € [a, b]. Hence, |f]| is Riemann integrable and its value
equals to (b — a).

Theorem 5. If f € R[a,b] and a < c < b, then

f€RlaclfeR[cbland [ f=[f+[ f.



Proof. The set D of points [a, b] at which f is not continuous is of
measure zero. Let D; be the set of points of discontinuities of f
in[a, c]. Then D; C [a,c] is a subset of a set of measure zero and
hence it is of measure zero. So f € R|[a, c]. Similarly f € R[c, b].

If P is any partition of [a,c] and Q is any partition of [c, b], then
P U Q is a partition of [a, b] whose component intervals are those of
P together with those of Q.

Hence, we have L[f;P]+ L[f;Q] =L[f;PuUQ] < f_baf

and so, we have L[f; P] + L[f; Q] < f;f.

By taking the least upper bound on the left over all P, keeping Q
fixed, we obtain

[Cf+Lf0 <[ f.

Now taking least upper bound over all Q, we get

Lr+lf<ff )

By using similar argument by considering the upper sums, we get
the reverse inequality,

L+ f=0f @)

From (1) and (2), weget [ f+ [ f=[ f.

Theorem 6. If f is continuous on a closed and bounded interval
[a, b], if f(x) = 0 for (a < x < b) and if f(c) > 0 for some ¢ € [a, b],
then f:f (x)dx > 0.

Proof From the properties of continuous functions in Chapter 4,
there exists a § >0 such that f(x)> % f(c) for some x €
(c=8,c+6)c|a,b].
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Now we have by Theorem 5,

Lr=1f+ [ =10 f.

The above formula can be suitably modified when we have c — § < a
or ¢ + 6 > b. By Theorem 3 of the order preserving property of the
integral, we get

b C+61 1
ff>0+f Ef(c) dx+0=265f(c)=6f(c)>0
a c-6

This proves that fabf > 0.

Theorem 7. If f is continuous on [a, b], f(x) = 0 for a < x < b, and if

f;f (x)dx = 0, then f is identically zero on [a, b].

Proof. By hypothesis f(x) = 0 in [a, b]. If f is not identically zero in
[a, b], there exists a point ¢ in [a, b] such that f(c) > 0.

Now f is a continuous function in the bounded closed
interval [a, b] and f(x) = 0. Since f(c) > 0 for a,c € [a, b], by the
previous theorem, [ f(x)dx > 0 which contradicts the hypothesis.
Hence f is identically zero on [a, b].

Theorem 8. If f is continuous on [a, b] and if F(x) = f;f(t)dt for

some x € (a, b), then F is continuous on [a, b].

Proof. Let x', x"" € [a, b] with x" > x"".

Then F(x')—F(x") = f;’f(x)dx - f;”f(x)dx = f;,,,f(x)dx .
Now given ¢ > 0, choose § = %where M is the lub f(x) in [a, b].
Now | F(x) = F(x")| S M(x' — x") <M— =e.

Hence, | F(x") — F(x'")| < e whenever |x' — x"| < 4.

This proves that F is continuous on [a, b].

Theorem 9. If f € R][a, b], then the following statements are true.

i.  f € R[c,d] for every subinterval [c,d] c [a, b].
ii. f2?€R[ab]
iii. f.g € R[a,b], whenever g € R|a, b].
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iv. If f,g €R|a,b], then f/g € R[a,b] where g is bounded

away from zero. NOTES
v. If f and g are bounded functions having the same

discontinuities on [a,b], then f € R[a,b] if and only if
g € R[a, b].

vi. Let g € R[a,b] and assume that m < g(x) <M for all
X € [a,b]. If f is continuous on [m, M], then the composite
function defined by h(x) = f[g(x)] is Riemann integrable on
[a, b].

Proof. (i). Let € > 0 be given. Then there exists a partition P of
[a, b] such that

U[f; Plla,b] — L[f; P][a, b] < ¢.

Let P* = PU{c,d}. The P* is a refinement of [a,b] and by the
Theorem 2 of 8.1, we have

U[f; P*]la,b] < U[f;Plla,bl and L[f;P"|[a b] = LIf; Plla, b]

Now let Q = P* N [c,d]. Then Q is obtained by restricting P* to
[c, d]. Hence we have the inequality,

Ulf; Qllc,dl — LIf; Qlle, d] < U[f; P*]la, b] = L[f; P*]la,b] (1)

because the left-hand side has fewer terms which are all non-
negative than the right hand side. Since f € R[a, b], we get

U[f,P*][a,b]—L[f,P*][a,b] <Eé. (2)
Using (2) in (1), we get U[f; Qllc,d] — L[f; Qllc,d] < e.
Therefore, we get f € R[c,d].

(ii). Let € > 0 be given and then there exists a partition P of [a, b]
such that

Ulf; Pl = L[f; P] <e.

We know that M[f% L) = M[I|f;I,]* and m[f% 1] =
m[|f; L]?

Ulf?% Pl = LIf% Pl = ) [MIf% 5] — mlf% L] |kl

NgE

&
1]

1
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= SRoaMLIFL B2 = mlIf1; P el
= 1ML IFL L] + ml UFl DML LFL Te] — mU L L]
<22 SR MLIFL B = mlIF1 L3l
where 1 is an upper bound of f in [a, b]. Therefore, we have
u|f%p| - L|f%p| < 2 2 (VNI P = LIIFL; PI]

Hence, by using theorem 4, we get

&
Ullf; P1 = LIIfI; P] < o7

Hence, U [fZ;P] —L [fz;P] < £ and therefore, f?2 € R[a, b].

(iii) This follows from the following identity and Theorem 2 (ii)
proved above.

2f()g() =[fC) +g()]* = [f()]* = [g(x)]?
(v) Since g(x)# 0 for any x €[a,b], applying (iii),
ﬁ§ERmmL

provided éER[a,b] whenever g € R[a,b] under the given

condition.

Hence we shall prove thaté € R[a, b], whenever g € R[a,b] and g is

bounded away from zero.
By hypothesis, g is bounded away from zero and so we have
|g(x)| > k for every x € [a, b].

Let P:a =xy <x; <x, <:+<x,=>b be a partition of [a,b] and
leta,f €.

| 1 1 |: |g(ﬁ)—g(a)

1
9@  gB® 9(@9(B) | <=19(B) = g(a)|.

From this, we get

M| ] =m |55 ] < HMIgs 1] = migs )



This implies U [l- P] ~1L E P] < L[Ulg;P] - Llg; P]] 3)

g’ K2
Since g € R|[a, b], given € > 0, there exists a partition P such that
Ulg; P] — L[g; P] < k?e. (4)
: : 1 1
Using (4) in (3), we get U [5, P] - L [5, P] <e.

(v) This follows by Theorem 2.

(vi) Since h is uniformly continuous on [m, M], given € > 0, there
existsa § > 0 such that§ < € and

lf(s)=—f(®)| <e,if |[s—t| <Fands,t € [m,M].

Since g € R[a, b], there is a partition, P:a = x,, x4, X3, ..., X, = b of
[a, b] such that

Ulg; P] - L[g; P] < &2

Let M*[h;I,] and m*[h; ;] for h corresponding to M|[g;I,] and
m|g; I ] on [a,b]. Divide the numbers 1,2,3,...,n into two groups
such that k € A if Ml[g;I,] —mlg;I] <6 and k € B if M|[g;I,] —
mlg; L] = 6.

Hence, if k € A, our choice of § shows that
M*[h; ] —m*[h; I] < €
Let A = lub |h(t)|in m <t < M.Thenifk € B, we get
M*[h; ;] — m*[h; I] < 2A.
Now, 8 Yresllel < Ties[Mlg; Il — mlg; L]kl < 82

From this, it follows that )¢l | < &,
n

Ulh; P] = L[h; P] = M*[h; L] —m*[h; L] ||
k=1

< ZkeA M*[hi Ik] - m*[h; Ik] |Ik| + ZkEB M*[hi Ik] -
m*[h; Ik] |Ik|

< g[b—a]+ 246
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< g[b—a] + 22e.

Since € > 0 is arbitrary, we get h € R[a, b].

10.5 THE FUNDAMENTAL THEOREM OF
CALCULUS

In the previous chapter, we have established that there are
real valued functions which are not the derivatives of any function
on [—1,1]. In the following theorem, we shall establish that if f is
continuous on [a,b], there exists a function F on [a, b] such that
F'(x) = f(x), thus establishing the link between the concepts of
derivative and integral.

Theorem 1. (First Fundamental Theorem of Calculus). If f is
continuous on the closed bounded interval [a, b] and if

F(x) = [T f(t)dt, then F'(x) = f(x) fora < x < b.
Proof. For any fixed x € [a, b], choose h # 0 and x + h € [a, b]. Then

we have the following:

x+h x

F(x+h)—F(x)=f f(t)dt—ff(t) dt

x+h

a
=[ f®Odt+ [ f)dt
We can rewrite the above step as,
Fx+h) —F(x) = [ f(£) dt. (1)

Since f is continuous on the closed and bounded interval [x,x + h],
we know that f attains a maximum value M and a minimum value m
at points of [x,x + h] by Intermediate Value Theorem of continuous
functions. Hence, there exist points ¢;t, € [x,x + h] such that
f(ty) =m,f(t,) =Mandm < f(t) < M. So we get

[ Pmde< [P de< M dt (2)
But [F"mdt=hmand [[7"M dt =M h (3)

Therefore, using (3) in (2) we get

x+h

mh < [ f(t) dt < Mh.



So, we can find a @ such thatm < 8 < M and

x+h

=%f F(b) dt

Since f takes every value between m and M by Intermediate Value
Theorem of continuous functions, there must exists a point c(h) in
[x,x + h) such that f[c(h)] = 6. Thus we have proved that if h > 0,
there exists c(h) in [x, x + h] such that

x+h

Fle(W)] == [*" f(t) dt

F(x+h)—F(x)

D=E = fle(h)]

From (1), we get

Since x < c(h) < x + h, we have lim;_,o c(h) = x.

Since f is continuous at x, the right side of (4) has the limit
f(x). Hence, the left side of (4) approaches F'(x) as h — 0. So we get

F’(x) _ limh_>0 F(x+h) —F(x)

= f().

In the above proof, we have assumed that h is positive. If h is
negative, we take [x + h, x] instead of [x, x + h] and make suitable
modification in the proof.

Note. The continuity of f is only a sufficient condition for a function
to be a derivative of a function on [a, b]. The continuity is not a
necessary condition as shown in the Example 7 of 7.1.

Instead of assuming continuity throughout [a, b], we assume f to be
continuous at any point x of [a,b] and f € R[a,b]. Under this
hypothesis, we have the following theorem.

Theorem 2. If f € R[a,b], if F(x) = [ f(t) dt where a < x < b and
if f is continuous at x, € [a, b], then F'(xy) = f(x;)-

Proof.For h > 0, let I(h) denote the interval [xy, xo + h]. If w[f; [(h)]
is the oscillation of f in I(h), we have for t € I(h), |f(t) — f(xo)| <

w[f;I(h)]. So
f(xo) —wlf; IW] < f(0) < fxo) + w[f; 1(R)]
where t € I(h).

Hence, we have
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R Geo) = wIf3 1] < 72" F(O)dt < RIf (o) + @I 1L

Since h > 0, we have after dividing by h,

(o) — wlf; 1(h)] < ZEMVFCD ey 4 o[f51(R)] (1)

h

Since f is continuous at x; by hypothesis, we have

limp_,o w[f;I(R)] =0 (2)

Taking the limitas h = 0 in (1) and using (2), we get
F'(x0) = f (o).

In the above, (1) is established for h > 0. We can establish (1) if
h < 0in a similar manner.

DEFINITION 1. A function F is called a primitive or an antiderivative
of a function f on a bounded closed interval [a, b] if F'(x) = f(x) for
all x in [a, b].

The First Fundamental Theorem of calculus states that we can
always construct a primitive of a continuous function by integration.

Now we shall prove the second fundamental theorem of
calculus establishing integration as the anti-differentiation or
reverse process of differentiation.

THEOREM 3. (Second Fundamental Theorem of Calculus). If f is a
continuous function on the closed bounded interval [a,b] and if

¢'(x) = f(x) for x € [a, b], then f: f(x)dx = ¢p(b) — ¢p(a).

Proof Let F(x) = fZ f(t)dt. Since f is continuous, by the First
Fundamental Theorem, we have

F'(x) = f(x) fora < x <b. (D

By hypothesis, ¢'(x) = f(x). Hence, we have F'(x) = ¢'(x)
for all x € [a, b]. Hence, by the Theorem 4 of 7.3, F(x) = ¢(x) + ¢ for
a < x < b and for some constant c in R.

Hence, F(b) —F(a) =[¢(b) +c]—[p(a) + c] = ¢(b) — ¢ (a).

But F(a) = f;f(t) dt = 0 from the definition.



Thus, F(b) = ¢(b) — ¢(a). Since F(b) = f(ff(t) dt, we have

[P f@®)dt = () — d(a).

Example 1. If (x) = 3 sinx + 2¢e”*, find the primitive F of f and use

the Second Fundamental Theorem to evaluate f; f(x)dx.

Now let F(x) = 2e* — 3 cos x whose derivative is the given function
f in any bounded closed interval [a,b]. Since sinx and e* are
continuous in [a, b], 3sinx + 2e* is continuous in [a, b]. Hence, by
the Second Fundamental Theorem of Calculus, we get

f:(S sinx + 2e*)dx = F(b) — F(a) = 2(e? —e%) — 3(cosbh —

cosa).

Theorem 4. If f(x) is continuous in the bounded closed interval [a, b]
then there exists a number ¢ lying between a and b such that

b
J, f(x)dx = (b — a)f ().

Note: Recharge ABCD < f:f(x) dx < Recharge AEFD
Proof. let b > a. We can rewrite the above inequality as

b
mSﬁfaf(x)deM.

E F

x=b

By C
Al |m 1D
b

v

b : .
So ﬁfa f(x)dx is a value between m and M of a continuous

function on [a, b]. Therefore, by Intermediate Value Theorem for
continuous function in [a, b], f takes this value at some point c of
[a, b]. So we get
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ﬁf:f(x) dx = f(c) for some c in [a, b].

This proves that f;f(x) dx = (b — a)f(c).
Check your progress
1. Define the measure zero set
2. State First Fundamental Theorem of Calculus.
3. Define primitive
4. State Second Fundamental Theorem of Calculus.

10.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1) A subset E of R is said to be of measure zero if for each € > 0,
there exists a finite or countable number of open intervals (I,,) such
thatE ¢ Uy, I, and X, |I,| < €.

2) If f is continuous on the closed bounded interval [a, b] and if
F(x) = [T f(t)dt, then F'(x) = f(x) fora < x < b.
3) A function F is called a primitive or an antiderivative of a

function f on a bounded closed interval [a, b] if F'(x) = f(x) for all
x in [a, b].

4) If f is a continuous function on the closed bounded interval
[a,b] and if ¢'(x) = f(x) for x € [a,b], then f;f(x)dx = ¢(b) —

¢ ().

10.7 SUMMARY

e Asubset E of R is said to be of measure zero if for each
€ > 0, there exists a finite or countable number of open intervals (I,,)
suchthatE ¢ Up-; I, and },, |I,| < .

e Ifeachof E}, E,, ..., of R is of measure zero, then
U= E, is also of measure zero.

e Every countable set of R is a set of measure zero.

e If a property is true on [a,b] expect on a set of
measure zero, then the property is said to be true almost everywhere
on [a, b] or for almost all points of [a, b]. That is, the set of points of
[a, b] at which the property is not true is a set of measure zero.

e Let f be a bounded function on the closed and
bounded interval [a, b]. Then f is Riemann integrable if and only if f
is continuous at almost every point in [a, b].




e If f is Riemann integrable on [a, b] and c is any real number,
then cf is Riemann integrable and

Lbcfchabf.

e Iff €R[a,b]land g € R[a,b], then f + g € R[a, b] and

b b b
[¢+a=]r+]a

e Iff € R[a,b] and if f(x) = 0 almost everywhere on [a, b], then

b
[r=o

e f€E€RJ[ab]and g € R[a,b] and if f(x) < g(x) almost
everywhere on [a, b], then f:f < f: g.
e Iff € R[a,b], then |f| € R[a, b] and we have

b b
[r|=[in

e Iff € R[a,b], then |f| € R[a, b].

e Iff €R[a,b]landa < c < b, then
f€Rlaclf€Rlcbland [ f=[f+[ f.
e If f is continuous on a closed and bounded interval [a, b], if
f(x) =0 for (a <x <b) and if f(c)> 0 for some c € [a,b],
then f:f (x)dx > 0.

e If f is continuous on [a,b], f(x) =0 for a<x < b, and if
f:f (x)dx = 0, then f is identically zero on [a, b].

e If f is continuous on [a,b] and if F(x) = f:f(t)dt for some
x € (a, b), then F is continuous on [a, b].

¢ First Fundamental Theorem of Calculus: If f is continuous on the
closed bounded interval [a, b] and if

F(x) = [ f(t) dt, then F'(x) = f(x) fora < x < b.

o Iff€R[ab]if F(x) = [  f(t)dt where a < x < b and if f is
continuous at x, € [a, b], then F'(xy) = f(xo).

o A function F is called a primitive or an antiderivative of a
function f on a bounded closed interval [a, b] if F'(x) = f(x) for all
x in [a, b].

J Second Fundamental Theorem of Calculus: If f is a continuous
function on the closed bounded interval [a, b] and if ¢'(x) = f(x)

for x € [a, b], then f; fx)dx = ¢p(b) — ¢p(a).
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e If f(x) is continuous in the bounded closed interval [a, b] then

there exists a number c lying between a and b such that f; f(x)dx =

(b —a)f (o).

10.8 KEYWORDS

e A subset E of R is said to be of measure zero if for each
€ > 0, there exists a finite or countable number of open intervals (I,,)
suchthatE ¢ Up-; I, and Y}, |I,| < €.

e Ifa property is true on [a, b] expect on a set of measure
zero, then the property is said to be true almost everywhere on [a, b]
or for almost all points of [a, b]. That is, the set of points of [a, b] at
which the property is not true is a set of measure zero.

e A function F is called a primitive or an antiderivative of
a function f on a bounded closed interval [a, b] if F'(x) = f(x) for all
x in [a, b].

10.9 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1) Prove that if f is continuous on [0,1] and if g(x) = f(x)
almost everywhere x € [0,1], then g is continuous almost everywhere
in [0,1].
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11.0 INTRODUCTION

In this chapter we introduce a class of functions called
contraction mappings and we prove a simple result regarding
contraction mappings on a complete metric space. We illustrate the
use of this theorem in classical analysis by proving the existence and
uniqueness of solution of a differential equation of first order.

111 OBJECTIVES

After going through this unit, you will be able to:
e Understand what is meant by Contraction Mapping

e Discuss the applications of contraction mapping

11.2 CONTRACTION MAPPING

11.2.1 Definition and Examples

Definition: Let (M,d) be a metric space. A mapping T:M — M is
called a contraction mapping if there exists a positive real number
a < 1suchthatd(T(x),T(y)) < ad(x,y) forallx,y € M.
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Note: If T is a contraction mapping then the distance d(T(x), T(y)) is
less than the distance d(x,y). Thus applying T to any two points x, y
contracts the distance between the two points.

Example 1. T: [0, ﬂ - [0, ﬂ defined by T(x) = x? is a contraction
mapping.
1
Proof. Let x,y € [O, 5].
Then d(T(x), T(y)) = |x* - y?|
=|lx+yllx—y

< glx —y| (sincex,y < i)

£ d(T(), T)) < 2d(x,)
Hence T is a contraction mapping.

Example 2. T: R — R defined by T(x) = %x is a contraction mapping
since d(T(x),T(y)) = %d(x, ¥).

Example 3. T:l, » I, defined by T(x) = G xn) is a contraction
mapping where x = (x,,).

Proof. Letx,y € [,. Letx = (x,),y = () -

Now, d(T(0), T(»)) = | Zi (2 - y—”)z]m = 3 (B (e = )12

2 2 T2

=-d(x,y).

-~ T is a contraction mapping.

Example 4. Let T: [0,1] - [0,1] be a differentiable function. If there is
areal number @ with 0 < a < 1 such that |T'(x)| < a forall x € [0,1]
where T’ is the derivative of T then T is a contraction mapping.

Proof. Let x,y € [0,1] and x < y.

By mean value theorem T(y) — T(x) = (y,x)T'(z) where x < z < y.



ST =T =y = x| IT'(2)] < aly — x|.
~d(TH),T(x))<ad(y,x)and0 < a < 1.

~ T is a contraction mapping.

11.3 CONTRACTION MAPPING THEOREM
AND ITS APPLIVATIONS

Theorem 11.1 Let T: M — M be a contraction mapping. Then T is
continuous on M.

Proof. Since T is contraction mapping
d(T(x),T(y)) <d(x,y)forallx,y € M. (D
Let € > 0 be given. Choose § = ¢.
Thend(x,y) < § = d(T(x),T(y)) <e (by(1))
« T is continuous.

Theorem 11.2 (Contraction mapping theorem)

Let (M, d) be a complete metric space. Let T: M — M be a contraction
mapping. Then there exists a unique point x € M such that T'(x) = x.

(i.e.) T has exactly one fixed point.

Proof. Let x,be an arbitrary point in M.

Let x1 = T(xq)
x; = T(x1)
x3 = T(x3)

Xpn = T(xn—l)

We claim that (x,) is a Cauchy sequence in M. Since T is a
contraction mapping, there exists a real number « such that
0< a<1land d(T(x),T(y)) <ad(xy).

Contraction Mapping And Its
Applications

NOTES

Self-Instructional material



Contraction Mapping And Its
Applications

o d(n, Xne1) = d(TO6-1), T(xy))
NOTES = @ A0 Xn)
< azd(xn—le‘n—l)

< a®d(xp-3,Xp-2)

< a™d(xg,x1)
S d(Xp Xng1) S APA(X0, X1) e (D
Now, letm,n € N and m > n.
Then  d(xp, %) < d(xp, Xp41) ¥ Ad(Xpp1, Xng2) + -+ dOon_1, Xm)
< a™d(xg, x1) + a™ld(xg, x1) + -
+a™ 1d(x,,x;) using (1)

= dnd(xo, xl)[l +a+a’+--+ am—n—l]
1
< ad(xg, x1) [E]
Thus d(xn, Xp) < = dffi'x—” for all m,n such thatm > n.

Now, since 0 < a < 1, the sequence (a™) — 0.

Given & >0 there exists a positive integer n; such that
a™d(xg,x1)

e <€ foralln > n;.
Then d(x,, x,,) < € forallm,n > n,.

Hence (x,,) is a Cauchy sequence in M.

Since M is complete there exists x € M such that (x,) = x.
Also by Theorem, T is continuous and hence (T (x)) — T (x).

& T(x) =limy e T(xy) = limy, e Xpeq = X.

Thus T(x) = x.

Self-Instructional material




Hence x is a fixed point of T.

Now, Suppose there exists y € M such thaty # x and T(y) = y.
Then d(x,y) = d(T(x),T(y)) < ad(x,y).

~d(,y)(1—a) <0.

Butd(x,y) > 0and 1 — a > 0 which is a contraction.

=~ x is the unique fixed point of T

Theorem 11.3 (Picard’s Theorem)

Let % = f(x,y) be a given differential equation where f(x,y) is

continuous in a closed rectangle
F={(x,y)/a, <x<a, andb; <x <b,}

and satisfy the Lipchitz condition given by |[f(x,y;) — f(x,¥,)| <
M|y, — y,| for all (x,y;) and (x,y,) € F. Let (x,,y,) be an interior
point of F. Then there exists a unique solution y = ¢(x) of the
differential equation such that ¢ (x,) = y,.

Proof. We first replace our problem by an equivalent problem
relating to an integral equation.

Let y = ¢(x) be a solution to the given differential equation
such that ¢ (xy) = y,.

Then <= (9(x)) = f(x, @(x)).
Integrating from x, to x we get ¢ (x) — @(xy) = f;; f(t, o@®)dt.

(i.e) p(x) =y, + f;“o JACR7IC) T 2 (1)

Now, if y = ¢(x) satisfies the integral equation (1), then it
satisfies the given differential equation and ¢(x,) = y,.
~ It is enough to prove that the integral equation (1) has a
unique solution.
Now, since f is continuous on the compact set F, it is
bounded.
=~ There exist a real number k > 0 such that

l[f(x,y)| < kforall (x,y) EF.cevereiiiiiciiieeeeene (2)
Now, choose a real number § > 0 such that M§ <1 and a
rectangle

F, ={(x,y)/|x —xo| <6 and |y — yo| < k} contained in F.
Let C* be the set of all continuous functions
@ € Clxy — &8, xy + 8] such that [p(x) — yo| < k6.
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By solved problem, C* is a complete metric space.
Let @ €C".

Define T(¢) = ¥ where ¥(x) = y, + f;;f(t, @(t))dt.
Clearly  is continuous.

Also, [p(x) —yol = |17 (&, <p(t))dt|. (from 1)
< k(x —xp)
< ké
~(x) — yo| < K6
L PEC

~ T is a mapping from C* - C".
Now we claim that T is a contraction mapping.

Let 1,9, € C*, T(¢1) = P, and T(¢,) = Y,. Then

2. (0) — 2 ()| = j F(t,01(0) = £ (6, 92(0)]dt

< [7 1 (6 01(®) = g(t, 92(D)dt

< M [ 1o:1(t) = 9o (0)]de
(using Lipchitz’s condition)
< M(x, xo) sup{|¢1(t) — @2 (D[}

< M&d (@4, @2).
Thus |1 (x) — P2 (x)| < MEd(@1, ¢2).
~ d(T (@), T(92))| < M&d (@1, ¢2).
Since Mé < 1T is a contraction mapping.

Hence there exists a unique function ¢ € C* such that T(¢) = ¢.

=90 =yo + [ f(t o).
~ ¢ is the unique solution of the integral equation (1). Hence the
theorem.



Check your progress

1) Define contraction mapping

2) If T:M — M is a contraction mapping. Then T?
3) State contraction mapping theorem.

114 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1) Let (M, d) be a metric space. A mapping T: M — M is called a
contraction mapping if there exists a positive real number a < 1
such that d(T(x),T(y)) < a d(x,y) forall x,y € M.

2) LetT:M — M be a contraction mapping. Then T is continuous on
M.

3) Let (M,d) be a complete metric space. Let T:M - M be a
contraction mapping. Then there exists a unique point x € M
such that T(x) = x.

(i.e.) T has exactly one fixed point.

11.5 SUMMARY

e Let(M,d) be ametric space. A mapping T: M — M is called a
contraction mapping if there exists a positive real number
a < 1 such that d(T(x),T(y)) <ad(x,y)forallx,y e M.

e LetT:M — M be a contraction mapping. Then T is continuous
on M.

e Contraction mapping theorem: Let (M,d) be a complete
metric space. Let T:M — M be a contraction mapping. Then
there exists a unique point x € M such that T(x) = x.

(i.e.) T has exactly one fixed point.

e Picard’s Theorem: Let Z—z= f(x,y) be a given differential

equation where f(x,y) is continuous in a closed rectangle
F={(x,y)/a, <x<a, andb; <x <b,}

and satisfy the Lipchitz condition given by |f(x,y1) — f(x,y2)| <
M|y, — y,| for all (x,y;) and (x,y,) € F. Let (x4, V,) be an interior
point of F. Then there exists a unique solution y = ¢(x) of the
differential equation such that ¢ (x,) = y,.
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11.6 KEYWORDS

Contraction mapping : Let (M, d) be a metric space. A mapping
T:M — M is called a contraction mappingif there exists a positive
real number a < 1 such that d(T(x),T(y)) < @ d(x,y) forall

x,y € M.

Contraction mapping theorem: Let (M, d) be a complete metric space.
Let T: M — M be a contraction mapping. Then there exists a unique
point x € M such that T'(x) = x.

(i.e.) T has exactly one fixed point.

11.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1. Prove that any contraction mapping T defined on a metric
space is continuous.

2. Prove that any contraction mapping T defined on a metric
space is uniformly continuous.

3. Prove that any contraction mapping T defined on a complete
metric space has a unique fixed point.

11.8 FURTHER READINGS

1) Arumugam & Issac, Modern Analysis, New Gamma Publishing
House, Palayamkottai, 2010.

2) Richard R. Goldbrg, Methods of Real Analysis, Oxford & IBH
Publishing Company, New Delhi.

3) D.Somasundaram & B. Choudhary, A first course in
Mathematical Analysis, Narosa Publishing House, Chennai.

4) M.K. Singhal & Asha Rani Singhal, A First Course in Real
Analysis, R. Chand & Co. June 1997 Edition.

5) Shanthi Narayan, A Couse of Mathematical Analysis, S. Chand
& Co., 1995
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12.0 INTRODUCTION

In R consider the subsets A = [1,2] and B = [1,2] U [3,4]. The set A
consists of a single ‘piece’ whereas B consists of ‘two pieces’. We say
that A is a connected set and B is not a connected set. This intuitive
idea is made precise in the following definition.

12.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand what is Connected sets

® Discuss Connectedness and Continuity

12.2 DEFINITION AND EXAMPLES

Definition. Let (M, d) be a metric space. M is said to be connected if
M cannot be represented as the union of two disjoint non-empty
open sets.
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If M is not connected it is said to be disconnected.

Example 1. Let M =[1,2] U [3,4] with usual metric. Then M is
disconnected.

Proof. [1,2] and [3,4] are open in M.

Thus M is the union of two disjoint non-empty open sets
namely [1,2] and [3,4].

Hence M is disconnected.

Example 2. Any discrete metric space M with more than one point is
disconnected.

Proof. Let A be a proper non-empty subset of M. Since M has more
than one point such a set exists.

Then A€ is also non-empty.
Since M is discrete every subset of M is open.
~ A and A€ are open.

Thus M = A U A€ where A and A€ are two disjoint non-empty
open sets.

~ M is not connected.

Theorem 12.1 Let (M, d) be a metric space. Then the following are
equivalent.

i. M is connected.
ii. M cannot be written as the union of two disjoint non-empty
closed sets.
ili. =M cannot be written as the union of two non-empty sets A
and Bsuchthat ANB=ANB = ¢.
iv. M and @ are the only sets which are both open and closed in
M.

Proof. (i) — (ii)
Suppose (ii) is not true.
~M=AUBwhereAdand B areclosedA +# ®,B + and AN B = Q.

~A°=BandB° =4



Since A and B are closed, A€ and B€ are open.
~ B and A are open.
Thus M is the union of two disjoint non-empty open sets.
~ M is not connected which is a contradiction.
~ (D) (i)
(i) - (iii)
Suppose (iii) is not true.
Then M = AUBwhere A+ @®,B+@PandANB=ANB=0.
We claim that A and B are closed.
Letx € A.
~x&B (Since AN B = )
“X€EA (SinceANB = M).
~ A = Aand hence A is closed.
Similarly B is closed.
NowANB=ANB (Since A = A).
= Q.

Thus M = AU B where 4 + @,B # @, A and B are closed and
A N B = @ which is a contradiction to (ii).

~ (i) — (iii)
(iii) - (iv)
Suppose (iv) is not true.

Then there exists A € M such that A # M and A # @ and A4 is
both open and closed.

Let B = AC.
Then B is also both open and closed and B # Q.
AlsoM = AU B.

Further AN B = AN A (Since A = Aand B = A°).

Connectedness

NOTES

Self-Instructional material



Connectedness

NOTES

Self-Instructional material

= Q.
Similarly A N B = @.
~M=AUB where AN B =@ =AnB which is a contradiction to
(iii).
~ (iii) = (iv).

(iv)~@®

Suppose M is not connected.
&~ M=AUBwhereA # ®,B + @,Aand B are openand AN B = @.

Then B¢ = A. Now, since B is open A is closed.
AlsoA # @and A # M (Since B # Q).

~ Ais a proper non-empty subset of M which is both open and closed
which is a contraction to (iv).

- (iv) ~ (D)

The following theorem gives another equivalent characterization for
connectedness.

Theorem 12.2 A metric space M is connected iff there does not exist a
continuous function f from M onto the discrete metric space {0,1}.

Proof. Suppose there exists a continuous function f from M onto the
discrete metric space {0,1}.

Since {0,1} is discrete, {0} and {1} are open.
~A=f"1({0}) and B = f~1({1}) are open in M.
Since f is onto, A and B are non-empty.
Clearly ANB=@0andAUB = M.
Thus A U B = M where A and B are disjoint non-empty open sets.
~ M is not connected which is a contradiction.

Hence there does not exist a continuous function from onto the
discrete metric space {0,1}.

Conversely, suppose M is not connected.



Then there exist disjoint non-empty open sets A and B in M such
that M = AU B.

OifxeA

Now, define f: M — {0,1} by f(x) = {1 if x€B

Clearly, f is onto.

Also f7H@) =0, fH{0P =4, f7'{1D =B and f7'({0.1}) =
M.

Thus the inverse image of every open set in {0,1} is open in M.
Hence f is continuous.

Thus there exists a continuous function f from M onto {0,1}
which is a contradiction. Hence M is connected.

Note. The above theorem can be restated as follows.

M is connected iff every continuous function f: M — {0,1} is
not onto.

Solved Problems

Problem 1. Let M be a metric space. Let A be a connected subset of
M. If B is a subset of M such that A € B € A then B is connected. In
particular 4 is connected.

Solution. Suppose B is not connected.

Then B = B; U B, where B; # ,B, # ,B; N B, = @ and B,
and B, are open in B.

Now, since B; and B, are open sets in B there exist open sets G; and

~B=B,UB,=(GiNnB)U(G,NB)=(G,VUG,)NB.
~B <SGV G,.
~AC Gy UG, (since A € B).
~AC(GLVU Gy NA.
=(G,NnA)U(G,NnA)
Now, (G; N A)and (G, N A) are open in A.

Further, (Gl n A) V) (Gz N A) = (Gl V) Gz) N A.
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= (G, V G,) N B (since A € B)
=(G,NnB)U (G, NB)
=B, NB,
= Q.
~(GLNA)U(G,NnA)=0.
Now, since A is connected, either G; NA =@ or G, N A = Q.
Without lose of generality let us assume that G; N A = @.
Since G, is open in M, we have G; N A = @.

~GNB=¢ (since B € A).

~ B; = @ which is a contradiction.
~ B is connected.

Problem 2. If A and B are connected subsets of a metric space M and
if AN B # @, prove that A U B is connected.

Solution. Let f: A U B — {0,1} be a continuous function.
Since A N B # @, we can choose x, € AN B.
Let f(x,) = 0.

Since f:AUB — {0,1} is continuous f|4:4 — {0,1} is also
continuous.

But A is connected.
Hence f|4 is not onto.
~f(x)=0forallx € Aor f(x) = 1forall x € A.
But f(x,) = 0 and x, € A.
~ f(x) = 0forall x € A.
Thus any continuous function f: A U B — {0,1} is not onto.

~ A U B is connected.



12.3 CONNECTED SUBSETS OF R

Theorem 12.3 A subspace of R is connected iff it is an interval.
Proof. Let A be a connected subset of R.
Suppose A is not an interval.

Then there exist a,b € R such that a < b < c¢ and a,c € 4 but
b & A.

Let A; = (—oo0,b) N Aand A, = (b,©) N A.

Since (—oo,b) and (b, ) are open in R, A; and A, are open sets
in A.

Also A; N A, = @and A; U A, = A.Furthera € A; and c € A,.
Hence A; # @ and 4, # Q.

Thus A is the union of two disjoint non-empty open sets A; and
A,.

Hence 4 is not connected which is a contradiction.
Hence A is an interval.
Conversely, let A be an interval. We claim that A4 is connected.

Suppose A is not connected. Let A = A; UA, where A; # 0,
A, # @, Ay N A, = @ and A, and A, are closed sets in A.

Choose x € A; and z € A,. Since A; N A, = @ we have x # z.
Without loss of generality we assume that x < z.
Now, since 4 is an interval we have [x, z] € A.
(i.e) [x,z] € A; U A,.
~ Every element of [x, z] is either in 4, orin 4,.
Now, lety = L.u.b.{[x,z] N A;}.
Clearly,x <y < z.
Hence y € A.

Let € > 0 be given. Then by the definition of LZu.b there exists
t €[x,z]NA;suchthaty —e <t <y.
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~y—gy+e)n([x,z]nA) + 0.
~y€xzlnA;
~y € [x,z] N A; (since [x, z] N A; is closed in A).
Therefore,y € A, (D

Again by the definition of y,y + € € A, for all € > 0 such that
y+e<z

Sy E A_z
Ly € A, (since Ay isclosed). e (2)

~y€A;NA, [by (1) and (2)] which is a contradiction since
Al N AZ = @

Hence A is connected.
Theorem 12.4 R is Connected.
Proof. R = (—o0, ) is an interval.
~ R is connected.
Solved Problems

Problem 1. Give an example to show that a subspace of a connected
metric space need not be connected.

Solution. We know that R is connected.
A = [1,2] U [3,4] is a subspace of R which is not connected.

Problem 2. Prove or disprove if A and C are connected subsets of a
metric space M and if A € B € C, then B is connected.

Solution. We disprove this statement by giving a counter example.
LetA =[1,2]; B =[12]U[3,4]; C =R.
ClearlyAc B c C.

Here A and C are connected. But B is not connected.



12.4 CONNECTEDNESS AND CONTINUITY

Theorem 12.5 Let M; be a connected metric space. Let M, be any
metric space. Let f: M; - M, be a continuous function. Then f(M,)
is a connected subset of M,.

(i.e.)Any continuous image of a connected set is connected.
Proof. Let f(M;) = A so that f is a function from M; onto A.
We claim that 4 is connected.
Suppose A4 is not connected. Then there exists a proper non-

empty subset B of A which is both open and closed in A.

~ f71(B) is a proper non-empty subset of M; which is both
open and closed in M;. Hence M; is not connected which is a

contradiction.
Hence A is connected.

Theorem 12.6 Let f be a real valued continuous function defined on
an interval I. Then f takes every value between any between any
two values it assumes.
(This if known as the intermediate value theorem).

Proof. Leta, b € [ and let f(a) # f(b).

Without loss of generality we assume that f(a) < f(b).

Let c be such that f(a) < ¢ < f(b).

The interval I is a connected subset of R. Therefore, f(I) is a
connected subset of R. (by theorem 12.5)

s~ f(I)isaninterval.  (by theorem 12.3)
Also f(a), f(b) € f(I). Hence [f(a), f(b)] < f(D).
scef()  [since f(@) < c < f(b)]

s ¢ = f(x) for some x € I.

Solved Problems
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Problem 1. Prove that if f is a non-constant real valued continuous
function on R then the range of f is uncountable.

Solution. We know that R is connected.

Since f is a continuous function on R, f(R) is a connected subset of
R.

~ f(R) isaninterval in R.

Also, since f is a non-constant function the interval. f(R) contains
more than one point.

= f(R) is uncountable. (i.e.) the range of f is uncountable.

Check your progress
1) Define connected set and disconnected set.
2) Any continuous image of a connected set is? connected.
3) What about R? Connected or disconnected.

12.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Let (M,d) be a metric space. M is said to be connected if M
cannot be represented as the union of two disjoint non-empty open
sets.

If M is not connected it is said to be disconnected.
2. Any continuous image of a connected set is connected.
3. Ris Connected.

12.6 SUMMARY

e Let (M,d) be a metric space. M is said to be connected if M
cannot be represented as the union of two disjoint non-empty open
sets.

If M is not connected it is said to be disconnected.

e LetM = [1,2] U [3,4] with usual metric. Then M is
disconnected.
e Any discrete metric space M with more than one point is
disconnected.
e Let (M,d) be a metric space. Then the following are
equivalent.
v. M is connected.
vi. M cannot be written as the union of two disjoint non-
empty closed sets.




vii. M cannot be written as the union of two non-empty

sets Aand B suchthat AN B =ANB = 0.

viii. M and @ are the only sets which are both open and
closed in M.

A metric space M is connected iff there does not exist a

continuous function f from M onto the discrete metric space

{0,1}.

M is connected iff every continuous function f: M — {0,1} is

not onto.

A subspace of R is connected iff it is an interval.

R is Connected

Let M; be a connected metric space. Let M, be any metric

space. Let f: M; - M, be a continuous function. Then f(M;)

is a connected subset of M,.

Let f be a real valued continuous function defined on an

interval I. Then f takes every value between any between any

two values it assumes.
(This if known as the intermediate value theorem).
12.7 KEYWORDS

Connected: Let (M, d) be a metric space. M is said to be connected if
M cannot be represented as the union of two disjoint non-empty
open sets.

Disconnected: If M is not connected it is said to be disconnected.

12.8 SELF ASSESSMENT QUESTIONS AND
EXERCISES
1. Let {A,} be a family of connected subsets of a metric space M
such that N A, # @. Then prove that A =U A, is a connected
subset of M.
2. Prove that the set of all components of a metric space M
forms a partition of M.
3. Let A,,A4,,...,A,, .. be connected subsets of a metric space
M each of which intersects its successor. Prove that U;-; 4,
is connected.
4. Prove that any connected subset of R containing more than
one point is uncountable.
5. If M is a metric space and x € M then {x} is a connected
subset of M.
12.9 FURTHER READINGS
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1) Arumugam & Issac, Modern Analysis, New Gamma Publishing
House, Palayamkottai, 2010.

2) Richard R. Goldbrg, Methods of Real Analysis, Oxford & IBH
Publishing Company, New Delhi.

3) D.Somasundaram & B. Choudhary, A first course in
Mathematical Analysis, Narosa Publishing House, Chennai.

4) M.K. Singhal & Asha Rani Singhal, A First Course in Real
Analysis, R. Chand & Co. June 1997 Edition.

5) Shanthi Narayan, A Couse of Mathematical Analysis, S. Chand
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13.0 INTRODUCTION

We have seen that the concept of completeness is the
abstraction of a property of the real number system. The concept of
compactness is also an abstraction of an important property
possessed by subsets of R which are closed and bounded. This
property is known as Heine Borel theorem which states thatif I € R
is a closed interval, any family of open intervals in R whose union
contains I has a finite subfamily whose union contains I.We now
introduce the class of compact metric spaces in which the
conclusion of Heine Borel theorem is valid.

13.1 OBJECTIVES

After going through this unit, you will be able to:
e Understand what is Complete metric space

® Discuss Compact Subset of R

13.2 COMPLETE METRIC SPACE

13.2.1 Definition and Examples

Definition: Let M be a metric space. A family of open sets {G,} in M
is called an open coverfor M if UG, = M.

A subfamily of {G,} which itself is an open cover is called a
subcover.

A metric space M is said to be compactif every open cover
for M has finite subcover.
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(i.e.) for each family of open sets {G,} such that UG, = M, there
exist a finite subfamily {G,, Gq,, ..., Ga, } such that UL, G,, = M.

Example 1. R with usual metric is not compact.

Proof. Consider the family of open intervals {(—n, n)/ n € N}.
This is a family of open sets in R.

Clearly U ,(—n, n) = R.

%~ {(—n, n)/ n € N} is an open cover for R and this open cover has
no finite subcover.

R is not compact.
Example 2. (0, 1) with usual metric is not compact.

Proof. Consider the family of open intervals {(1/n,1)/n = 2,3,... }
Clearly U5, (-, 1) = (0,1).

{(1/n,1)/n = 2,3,... }isan open cover for (0, 1) and this open
cover has no finite subcover.

Hence (0, 1) is not compact.

Example 3. [0, ) with usual metric is not compact.
Proof. Consider the family of intervals {[0,n)/n € N}.
[0,n) is open in [0, o) for eachn € N.

Also Up~; (0,n) = [0,0).

~ {[0,n)/n € N} is an open cover for [0, ) and this open cover has
no finite subcover.

Hence [0, ) is not compact.

Example 4. Let M be an infinite set with discrete metric. Then M is
not compact.

Proof. Let x € M. Since M is a discrete metric space {x} is open in M.
Also Uyep{x} = M.

Hence {{x}/x € M} is an open cover for M and since M is infinite, this
open cover has no finite subcover.

Hence M is not compact.



Example 5. Any closed interval [a, b] with usual metric is compact.

Theorem 13.1 Let M be a metric space. Let A € M. A is compact iff
given a family of open sets {G,} in M such that U G, 2 A there exists
asubfamily {Gg,, Gy, ..., G, } such that Ui, G, = A.

Proof. Let A be a compact subset of M.

Let {G,} be a family of open sets in M such that U G, 2 A.
Then (U G,) NA = A.

~U (G, N4) =A.

Also G, N Aisopenin A.

=~ The family {G, N A } is an open cover for A.

Since A is compact this open cover has a finite subcover, say,
Go, NA, Gy, NA,...,Gq NA.

~ Uit1(Gg, N A) = A

~ (U1 Gg) NA = A

~ ULy Gy 2A.

Conversely, let {H,} be an open cover for A.
~ Each H, is open in A.

~ H, = G, N Awhere G, is open in M.

Now, U H, = A.
~U (G, NA4) =A.
~(UGy)NA=A
~UG, 24

Hence by hypothesis there exists a finite subfamily {G,,, Gg,, ..., G, }
such that Ui, Gg, 2 A.

2 (UL, Gg) NA = A

= Uiz1(Gg, 0 A) = A
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w1 He, = A
Thus {Hy ,Hg,, ..., Hg, } is a finite subcover of the open cover {H,}.
~ A is compact.
Theorem 13.2 Any compact subset A of a metric space M is bounded.
Proof. Let x, € A.
Consider {B(xy, n)/n € N}.
Clearly Uy~ B(xo,n) = M.
o Up=q B(xg,n) 2 A.

Since A is compact there exists a finite subfamily say,
B(xo,m1), B(xg,n3), ..., B(xg, 1) such that UX; B(x,,n;) 2 A.

Letny = max{n,, n,,....,ng}.
Then UX_, B(xo,m;) = B(x0,M0).
= B(xg,mp) 2 A.

We know that B(x(, ng) is a bounded set and a subset of a bounded
set is bounded. Hence A is bounded.

Note:
The converse of the above theorem is not true.
For example, (0, 1) is a bounded subset of R. But it is not compact.

Theorem 13.3 Any compact subset A of a metric space(M,d) is
closed.

Proof. To prove that 4 is closed we shall prove that A€ is open.
Lety € A° and let x € A. Then x # y.

~d(x,y) =1 >0.
It can be easily verified that B (x , %rx ) N B (y, %rx ) = Q.
Now consider the collection {B (x, %rx )/x € A}.

Clearly U,es B (x, %rx) 2 A



Since A is compact there exists a finite number of such open balls
1 1
say, B (xl » 3Ty ), ., B (xn, 5 Ten ) such that

1
Uy B (31, 375 ) 2 Acrrremeeemercaeecs >(1)
1
Now, letV, = N, B (y, ST )
Clearly V, is an open set containing y.

SinceB(y, %ry) N B(x, %rx)=®,wehavel/ynB(x, —rxi)=®

foreachi=1,2,..,n.

 UyeacVy, = A° and each I, is open.

- A€ is open. Hence A is closed.

Note 1. The converse of the above theorem is not true.

For example, [0, 1) is a closed subset of R. But it is not compact.

Note 2. It follows from the above two theorems that any compact
subset of a metric space is closed and bounded.

Theorem 13. 3 A closed subspace of a compact metric space is
compact.

Proof. Let M be a compact metric space. Let A be a non-empty closed
subset of M.

We claim that A is compact.

Let {G,/a € I} be a family of open sets in M such that U,¢; G, 2 A.
i AU (Uges Go) = M.

Also A€ is open, since A is closed.

s {Gy/a € I} U {A} is an open cover for M.

Since M is compact it has a finite subcover say Ga,r Gayy ey Gy A°.
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& (Ufy Gy) VA = M.
- U?:l Gai 2 A

~ Ais compact.

13.3 COMPACT SUBSETS OF R

We have already proved that compact subset of a metric
space is closed and bounded.

However the converse is true.
For example, consider an infinite discrete metric space (M, d).
Let A be an infinite subset of M.
Then A is bounded since d(x,y) < 1forall x,y € A.
Also A is closed since any subset of a discrete metric space is closed.
Hence A is closed and bounded.
However A is not compact.

In this section we shall prove that for R with usual metric the
converse is also true.

Theorem 13. [Heine Borel Theorem]
Any closed interval [a, b] is a compact subset of R.
Proof.

Let {G,/a € I} be a family of open sets in R such that
Uger Go 2 [a,b].

LetS = {x/x € [a, b] } and [a, x] can be covered by a finite number of
G,'s.

Clearly a € S and hence S # @.
Also S is bounded above by b.
Let ¢ denote the l. u. b. of S.
Clearly ¢ € [a, b]

“ € € Gg, for some q; € I.



Since G, is open, there exists € > 0 such that (¢ — ¢,¢ + €) € G,
Choose x; € [a, b] such that x; < ¢ and [xy, ¢] € Gg,.

Now, since x; < ¢, [a, x;1] can be covered by a finite number of G,’s.
These finite number of G,'s together with G, covers [a, c].

=~ By definition of §, c € S.

Now, we claim that ¢ = b.

Suppose ¢ # b.

Then choose x; € [a, b] such that x, > c and [c, x;] € G,

As before, [a, x;] can be covered by a finite number of G,’s.
Hence x, € S.

But x, > ¢ which is a contradiction, since c is the l. u. b. of S.
~c=bh.

=~ [a, b] can be covered by a finite number of G, ’s.

=~ [a, b] is a compact subset of R.

Theorem 13. A subset A of R is compact iff A is closed and
bounded.

Proof. If A is compact then A is closed and bounded.
Conversely, let A be subset of R which is closed and bounded.

Since A is bounded we can find a closed interval [a, b] such that
A C [a,b].

Since A is closed in R, A is closed interval [a, b] also.
Thus A is a closed subset of the compact space [a, b].
Hence A is compact.

Definition. A family T of subsets of a set M is said to have the finite
intersection property if any finite members of 77 have non-empty
intersection.

Example. In R the family of closed intervals ' = {[—n,n]/n € N} has
finite intersection property.
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Theorem A metric space M is compact iff any family of closed sets
with finite intersection property has non-empty intersection.

Proof. Suppose M is compact.

Let {A4,} be a family of closed subsets of M with finite intersection
property.

We claim that N 4, # @.

Suppose N A, = @ then (N A4,)¢ = ©@°.
~LUAS, =M.

Also, since each A, is closed, A€, is open.
=~ {A,} is an open cover for M.

Since M is compact this open cover has a finite subcover say,
A€, A, . AC.

i=1 A% =M.
“ (N A =M.

©1A; =@ which is a contradiction to the finite intersection
property.

“NAg # 0.

Conversely, suppose that each family of closed sets in M with
finite intersection property has non-empty intersection.

To prove that M is compact, let {G,/a € I} be an open cover for M.
~ UgerGg = M.

“ (Uger Gg)© = M°©.

“ NaerGo° = B

Since G, is open, G, is closed for each a.

o T ={G, /a € I} is a family of closed sets whose intersection is
empty.

Hence by hypothesis this family of closed sets does not have the
finite intersection property.



Hence there exists a finite sub-collection of T say, {G;°, G, ..., G,‘}
such that N, G;° = @.

= (UG = 0.
oo U?=1 Gi =M.
~ {G4, Gy, ...., G, } is a finite subcover of the given open cover.

Hence M is compact.
Definition.

A metric space M is said to be totally bounded if for every
€ > 0 there exists a finite number of elements x;, x5, ..., x, € M

such that B(x;, &) UB(x,,&) U ....U B(x,, &) = M.

A non-empty subset A of a metric space M is said to be
totally bounded if the subspace A is a totally bounded metric space.

Theorem. Any compact metric space is totally bounded.
Proof. Let M be a compact metric space.

Then {B(x, €)/x € M} is an open cover for M.

Since M is compact this open cover has a finite subcover say,
B(xq,€),B(x3,€), ..., B(xy, €).

&M = B(x1,€) UB(x3,&) U ....U B(xy, €).

=~ M is totally bounded.

Theorem Let A be a subset of a metric space M. If A is totally
bounded then 4 is bounded.

Proof. Let A be a totally bounded subset of M. Let& > 0 be given.

Then there exists a finite number of points xq, x5, ..., x, € 4, such
that

B(x1,€) UB(x3,&) U ....U B(x,, &) = A, where B(x;,€) is an open
ball in A.

Further we know that an open ball is a bounded set.
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Thus A4 is the union of finite number of bounded sets and hence 4 is
bounded.

Note. The converse of the above theorem is not true.
For, let M be an infinite set with discrete metric.

Clearly M is bounded.

Now, B (x, %) = {x}.

Since M is infinite, M cannot be written as the union of a finite

number of open balls B (x, %)

~ N is not totally bounded.

Definition. Let (x,) be sequence in a metric space M. Let
n,<n, <--< n,<-- be an increasing sequence of positive
integers. Then (x,, ) is called a subsequence of (xy).

Theorem. A metric space (M,d) is totally bounded iff every
sequence in M has a Cauchy subsequence.

Proof. Suppose every sequence in M has a Cauchy subsequence.
We claim that M is totally bounded.

Let e > 0 be given. Choose x; € M.

IfB(x1,€) = M then obviously M is totally bounded.

If B(x,,€) # M, choose x, € M — B(xy,€) so thatd(x; ,x;,) = €.
Now , if B(x,€) U B(x,, €) = M the proof is complete.

If not choose x3 = M — [B(xy,€) U B(x;,¢)] and so on.

Suppose this process does not stop at a finite stage.

Then we obtain a sequence x4, x5, ..., X, ... such that d(x,,, x,;,) = ¢
ifn #m.

Clearly this sequence (x,,) can not have a Cauchy sequence which is a
contradiction.

Hence the above process stops at a finite stage and we get a finite set
of points {x;,xy,..,x,} such that M = B(x;,&) UB(x,€) U ....U
B(xy, €).



~ M is totally bounded.
Conversely suppose M is totally bounded.
LetS; = {xil,xiz, N P } be a sequence in M.

If one term of the sequence is infinitely repeated then S; contains a
constant subsequence which is obviously a Cauchy subsequence.

Hence we assume that no term of S; is infinitely repeated so that the
range of §; is infinite.

Now, since M is totally bounded M can be covered by a finite number
of open balls of radius 1/2.

Hence at least one of these balls must contain an infinite number of
terms of the sequence S; .

~ §; contains a subsequence S, = (x3,,X3,, ...., X2, -...) all terms of

which lie within an open ball of radius 1/2.

Similarly S, contains a subsequence S3 = (x3,,X3,, ...., X3, ....) all
terms of which lie within an open ball of radius 1/3.

We repeat this process of forming successive subsequences and
finally we take the diagonal sequence S = (xll,xzz, N S §

We claim that § is a Cauchy subsequence of S; .

If m > nboth x,, and x, lie withinan open ball of radius 1/n.
o d (X X)) < 2/1

Hence d(x.,,,, xn,) < €ifn,m > 2/e.

This shows that S is a Cauchy subsequence of S;.

Thus every sequence in M contains a Cauchy subsequence.

Corollary. A non-empty subset of a totally bounded set id totally
bounded.

Proof. Let A be a totally bounded subset of a metric space M.
Let B be a non-empty subset of A.
Let (x,) be a sequence in B.

= (x,) isasequence in A.
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Since A is a totally bounded (x,) has a Cauchy subsequence.
Thus every sequence in B has a Cauchy subsequence.

~ B is totally bounded.

Definition

A metric space M is said to be sequentially compact if every
sequence in M has a convergent sun-sequence.

Theorem

Let (x,) be a Cauchy sequence in a metric space M. If (x;)
has a subsequence (xy, ) converging to x, then (x,) converges to x.

Proof. Let € > 0 be given. Since (x,) is a Cauchy sequence, there
exists a positive integer m; such that d(x,,x;) <%s for all

MM = My ---mmmmmmmmmmmmeomoeooooee > (1)

Also, since (xp,) — x, there exists a positive integer m, such that

d(xn,, x) < %s foralln, = my -------------mmmmmo- > (2)
Let my = max{m,, m,}and fixn, = m,.
Then d(x,, x) < d(x,, xn )+ d(xn, %)

&

<5+t g foralln = my by (1) and (2)

= ¢ forall n = m,.
Hence (x,) — x.
Theorem In a metric space M the following are equivalent.

i. M is compact.

ii.  Any infinite subset of M has a limit point.
iii. M is sequentially compact.
iv. M is totally bounded and complete.

Proof.
(i) = (ii).Let A be an infinite subset of M.
Suppose A has no limit point in M.

Letx € M.



Since x is not a limit point of A there exists an open ball B(x, )
suchthat B(x, r,) N (A — {x}) = 0.

_ ({x} if xeA
. B(x, rx)nA—{Q if x¢A
Now, {B(x, 1)/x € M} is open cover for M.
Also each B(x, r,)covers at most one point of the infinite set A.

Hence this open cover can not have a finite sub cover which is a
contradiction to (i). Hence A has at least one limit point.

(ii) = (iii). Let (x,) be a sequence in M.

If one term of the sequence is infinitely repeated, then (x,,) contains
a constant subsequence which is convergent.

Otherwise (x,) has an infinite number of terms.
By hypothesis this infinite set has a limit point, say x.

We know that for any r > 0 the open ball B(x,r) contains infinite
number of terms of the sequence (x,,) .

Now, choose a positive integer n, such that x, € B(x, 1).
Then choose n, > n, such that x,, € B(x, 1/2) .

In general for each positive integer k choose n; such that n, > n;_,
and

X, € B(x, 1/}).
Clearly (xy,) is a subsequence of (x;,) .
Also d(xnk ,x) < 1/k'
o (xp,) — x.
Thus (x,, ) is a convergent subsequence of (x,,) .

Hence M is sequentially compact.

(iii) = (iv) . By hypothesis every sequence in M has a convergent
subsequence.
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But every convergent sequence is a Cauchy sequence.
Thus every sequence in M has a Cauchy subsequence.
-~ By the theorem, M is totally bounded.

Now, we prove that M is complete.

Let (x,,) be a Cauchy sequence in M.

By hypothesis (x,,) contains a convergent subsequence (x,, ).

Let (xp, ) = x. (say)

Then by previous theorem, (x,) — x.

~ M is complete.

(iv) = (i) . Suppose M is not compact.

Then there exists an open cover {G,} for M which has no finite
subcover.

Letr, =

Z_n .
Since M is totally bounded, M can be covered by a finite number of

open balls of radius ;.

Since M can not be covered by a finite number of G,’s at least one of
these open balls, say B(x;, ;) cannot be covered by a finite number
of G,'s.

Now, B(x4, r1) is totally bounded.

Hence as before we can find x, € B(xy, r;) such that B(x,, 1)
cannot be covered by a finite number of G,’s.

Proceeding like this we obtain a sequence (x,) in M such that
B(x,, 1) cannot be covered by a finite number of G,’s and
Xp+1 € B(x,, 1,) foralln.

Now,
d(xn ,xn+p) <

d(xn, Xn41) + d(ng1, Xng2) + o+ d(xn+p—1 ’ xn+p)

< Tyt Tyt Typaa



1 1 1
= 2_n+ on+1 ot on+p—1
1 1 1 1 1
= Py (E+ 2—2+ et 2—p) < Pyl
1 1 1 1 1
= Py (E+ 2—2+ et 2—p) < Pyl

%~ (x,) isaCauchy sequencein M.
Since M is complete there exists x € M such that (x,,) — x.
Now, x € G, for some a.

Since G, is open we can find € > 0 such that B(x, &) S G,------ >(1)

We have (x,,) - x and (1) = (zi) - 0.

n

Hence we can find a positive integer n; such that d(x, ,x) < %e and

1, < %e foralln > n,.
Now, fix n > n;.
We claim that B(x,, ,1,) € B(x,¢).
Lety € B(x,,n,)
diy,x,) < nr < %e, sincen = n,.
Now, d(y,x) < d(y, x,) + d(xp,x)
< %e+ %s = &
~y € B(x,¢).
.~ B(x,,1,) € B(x,&) S G,,by (1)

Thus B(x,,r,) is covered by the single set G, which is a
contradiction since B(x, ,n, ) cannot be covered by a finite number
of G,'s.

Hence M is compact.
Theorem R with usual metric is complete.
Proof. Let (x,) be a Cauchy sequence in R.

Then (x,) is a bounded sequence and hence is contained in a closed
interval [a, b].
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Now, [a, b] is compact and hence is complete.
Hence (x,) converges to some point x € [a, b].

Thus every Cauchy sequence (x,) in R converges to some point X in
R and hence R is complete.

Solved Problems:

1. Give an example of a closed and bounded subset of [, which is
not compact.

Solution: Consider 0 = (0,0, ...) € [,.

Consider the closed ball B[0,1].

Clearly, B[0,1] is bounded.

Also, B[0,1] is a closed set.

We claim that B[0,1] is not compact.

Consider e; = (1,0,0, ...); e, = (0,1,0, ...); ... e, = (0,0,0, ...,1,0, ...).
Now, d(0,e,) =1 and hence e,, € B[0,1] for all n.

Thus (e,,) is a sequence in B[0,1].

Also d(ep, ) = V2if n # m.

Hence the sequence (e,,) does not contain a Cauchy subsequence.

~ B[0,1] is not totally bounded.

~ B[0,1] is not compact.

Problem 2:

Prove that any totally bounded metric space is separable.

Solution: Let M be a totally bounded metric space.

For each natural number n let 4, = {x,,, Xp,, ..., Xn, } be a subset of

M such that U¥_, B (xn %) Y R — >(1)
LetA = Up-; A,
Since each A, is finite, A is a countable subset of M.

We claim that 4 is dense in M.
Let B(x, €) be any open ball.

Choose a natural number n such that 1/n < «.
Now, x € B( xy, ,%) for some i, by (1)
B(xni,x) < 1/n <e&.

(xni) € B(x,¢)



s~ B(x,e) NA # Q.

Thus every open ball in M has non-empty intersection with A.
Hence A is dense in M.

Thus A is a countable dense subset of M.

Hence M is separable.

Problem 3. Prove that any bounded sequence in R has a convergent
subsequence.

Solution. Let (x,) be a bounded sequence in R.

Then there exists a closed interval [a, b] such that (x,,) € [a, b] for all
n.

Thus (x,) is a sequence in the compact metric space [a, b].
Hence by the above theorem, (x,) has a convergent sub-sequence.

Problem 4. Prove that the closure of a totally bounded set is totally
bounded.

Solution. Let A be a totally bounded subset of a metric space M.
We claim that A is a totally bounded.

We shall show that every sequence in A contains a Cauchy
subsequence.

Let (x,) be asequence in A.

Let € > 0 be given.

Then since x, € /T,B(xn,is) NA # Q.
Choose y,, € B(xn,és)nA.

: d(ynrxn) < %S S >(1)

Now, (y,) is a sequence in A. Since A is totally bounded (y,,)
contains a Cauchy sequence say (y, ).

Hence there exists a natural number m such that

d (yni, ynj) < %s forall nj, n; =m--------- >(2)
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. d(xni, xnj) < d(xni, ynl.) + d(yni, ynj) + d(ynj, xnj)
< §£+ §£+ ge foralln;, n; =m,by (1)and (2)
Hence (xy, ) is a Cauchy subsequence of (x;) .

A is totally bounded.

Problem 5. Let A be a totally bounded subset of R. Prove that 4 is
compact.

Solution. Since A is totally bounded, A is also totally bounded.
Also, since A is a closed subset of R and R is complete A is complete.
Hence A is totally bounded and complete.

~ A is compact.

Theorem Let f be a continuous mapping from a compact metric
space M; to any metric space M,. Then f(M;) is compact.

Proof. Without loss of generality we assume that f(M;) = M,.
Let {G,} be a family of open sets in M, such that U G, = M,.

~ UGy = f(My).

~fTHUGy) = M.

2U f7H(Gy) = My

Also since f is continuous f~1(G,) is openin M, for each a.

~ {f1(G,)} is an open cover for M;.

Since M, is compact this open cover has a finite subcover, say,
FHGay) fH(Gay) s oo fH(Gay)-
- fTHGa)) VU HGa,) U U fH(Gy,) = My .
- Y UL, Gy) = M.
UL1Ge, = f(My) = M,.

- Gg,) Gay) ey Gg, 1S a cover for M.



Thus the given open cover {G,} for M, has a finite subcover.
~ M, is compact.

Corollary 1. Let f be a continuous map from a compact metric space
M, into any metric M,. Then f(M;) is closed and bounded.

Proof. f(M,) is compact and hence is closed and bounded.

Corollary 2. Any continuous real valued function fdefined on a
compact metric space is bounded and attains its bounds.

Proof. Let M be a compact metric space.

Let f: M — R be a continuous real valued function.

Then f (M) is a compact subset of R.

~ f(M) is aclosed and bounded subset of R.

Since f(M) is bounded f is a bounded function.
Now,leta=1. u. b. of f(M) and b =g. L. b. of f(M).
By definition of Lu.bandg.l.ba,b € f(M)

But f(M) is closed . Hence f(M) = f(M).

~ a,b € f(M).

. There exists x,y € M such that f(x) = aand f(y) = b.
Hence f attains its bounds.

Note.

1. Corollary (2) is not true if M is not compact.

2. The function f:(0,1) > R defined by f(x)=1/x s
continuous but not bounded.

3. The function g:(0,1) - R defined by g(x) = x is bounded
having l.u.b.=1 and g.l.b.= 0. However this function never
attains these bounds at any point in (0, 1).

Theorem Any continuous mapping f defined on a compact metric
space (M;, d,) into any other metric space (M,, d,) is uniformly
continuous on M.

Proof. Let e > 0 be given. Letx € M, .

Since f is continuous at x there exists §, > 0 such that
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di(y,x) < 8, = dp(f), F(0) < 1/pe-mmns >(1)

Now, the family of open balls {B(x, %6x)/x € M,} is an open cover
for M;.

Since Mj; is compact this open cover has a finite sub cover say

B(xl, %le);---» B(xn, %an)-

Let§ = min{>6y,, ., 50x,}

We claim that d,(p,q) < § = dz(f(p), f(q)) < e

i

Letp € B (xl-, %6,() for some i where 1 < i < n.
1
: dl(p' xi) < E(Sxi

» do(f() f()) < 1/2 €,by (1) ------m-mm---- >(2)
Now, d;(q,x;) < dyi(q, p) + di(p,x)

<6+ 20y,

S8y + 50 = Oy
Thus di(q,%;) < &y,
o dy(F(@), f(x)) < fpe, by (1) -weeemees >(3)
Now, dy(f(p), f(@)) < do(f(0), f(x)) +do(f(x), f(q))
<1l/ye+ 1/5e = e (by(2)and (3))

Thus d;(p,q) < 6§ = do(f(P), f(Q) < e

This proves that f is uniformly continuous on M.
Note. The above theorem is not true if M; is not compact.

We have seen that if f is a continuous bijection then f~! need not be
continuous. Now we shall prove that if f is a continuous bijection
defined on a compact metric space, then f 1 is also continuous.



Theorem Let f be a 1 —1 continuous function from a compact
metric space M; onto any metric space M,. Then f~! is continuous
on M,. Hence f is a homeomorphism from M; onto M,.

Proof. We shall show that f~!is continuous by proving that F is a
closed set in M.

= (f"H™Y(F) = f(F) isaclosed set in M,.

Let F be a closed set in M;.

Since M, is compact F is compact.

Since f is continuous f(F) is a compact subset of M,.
=~ f(F)is aclosed subset of M,.

~ 71 is continuous on M,.

Solved Problems.

1. Prove that the range of a continuous real valued function f on
a compact connected metric space M must be either a single
point or a closed and bounded interval.

Solution. Let f: M — R be a continuous function.

Case(i). Suppose f is a constant function.
Then the range of f is a single point.

Case(ii). Suppose f is not a constant function.
Then the range of f contains more than one point.
since M is connected f (M) is a connected subset of R.
~ f(M) is an interval in R.

Also, since M is compact and f is continuous f (M) is a compact
subset of M.

=~ f(M) is a closed and bounded subset of R.
Thus f (M) is a closed and bounded interval of R.

Problem 2. Prove that any continuous function f:[a,b] — R is not
onto.

Solution. Suppose f is onto. Then f([a, b]) = R.
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Now, since [a, b] is compact and f is continuous, f([a, b]) =R is
compact which is a contradiction.

~ f is not onto.

Check your progress
1. Define open cover.
2. Define subcover.
3. Define compact metric space.
4. State Heine Borel theorem.
13.4 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. Let M be a metric space. A family of open sets {G,} in M is
called an open coverfor M if UG, = M.

2. A subfamily of {G,} which itself is an open cover is called a
subcover.

3. A metric space M is said to be compactif every open cover for
M has finite subcover.

4. Any closed interval [a, b] is a compact subset of R.

13.5 SUMMARY

e Let M be a metric space. A family of open sets {G,} in M is
called an open coverfor M if UG, = M.

e A subfamily of {G,} which itself is an open cover is called a
subcover.

e A metric space M is said to be compact if every open cover for
M has finite subcover.

e R with usual metric is not compact.

(0, 1) with usual metric is not compact.

e [0,00) with usual metric is not compact.

e Let M be an infinite set with discrete metric. Then M is not
compact.

e (Closed interval [a, b] with usual metric is compact.

e Let M be a metric space. Let A € M. A is compact iff given a
family of open sets {G,} in M such that U G, 2 A there exists a
subfamily {G,,, Gq,, ..., G, } such that Ui, G,, = A.

e Any compact subset A of a metric space M is bounded.

e Any compact subset A of a metric space(M, d) is closed.

e A closed subspace of a compact metric space is compact.

e Heine Borel Theorem: Any closed interval [a, b] is a compact
subset of R.




A subset A of R is compact iff A is closed and bounded.

A family T of subsets of a set M is said to have the finite
intersection property if any finite members of 77 have non-
empty intersection.

A metric space M is compact iff any family of closed sets with
finite intersection property has non-empty intersection.

A metric space M is said to be totally bounded if for every
€ > 0 there exists a finite number of elements x;,x,, ...,x, €
M

such that B(x;,&) UB(x,,&) U ....U B(x,, &) = M.

Any compact metric space is totally bounded.

Let A be a subset of a metric space M. If A is totally bounded
then A is bounded.

Let (x,,) be sequence in a metric space M. Letn; <n, < - <
n, < --- be an increasing sequence of positive integers. Then
(xp,) is called a subsequence of (x;,).

A metric space (M, d) is totally bounded iff every sequence in
M has a Cauchy subsequence.

A metric space M is said to be sequentially compact if every
sequence in M has a convergent sun-sequence.

13.6

KEYWORDS

Open cover: Let M be a metric space. A family of open sets {G,}
in M is called an open coverfor M if UG, = M.

Subcover: A subfamily of {G,} which itself is an open cover is
called a subcover.

Compact metric space: A metric space M is said to be compact if
every open cover for M has finite subcover.

Heine Borel Theorem: Any closed interval [a, b] is a compact
subset of R.

Sequentially compact: A metric space M is said to be
sequentially compact if every sequence in M has a convergent
sun-sequence.

13.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES
1. If A and B are two compact subsets of a metric space M. Prove

that A U B is also compact.

Let M be a complete metric space. Prove that a closed subset
A of M is compact if and only if A is totally bounded.

Prove that any Cauchy sequence in a metric space is totally
bounded.
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4. Prove that any continuous function from a compact metric
space to any other metric space is a closed map.

5. Any sequence in a compact metric space has a convergent
subsequence.

6. Any continuous function defined on a closed interval [a, b] is
uniformly continuous.
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14.0 INTRODUCTION

In this chapter we discussed convergence of sequence and
series of real numbers. In this chapter we discuss the convergence of
sequence and series of functions. We deal almost exclusively with

real-valued functions.

14.1 OBJECTIVES

After going through this unit, you will be able to:

e Understand what is meant by Pointwise convergence of
sequence of functions

e Discuss Uniform Convergence of Sequence of functions

e Discuss Cauchy Criterion for Uniform Convergence

14.2 POINTWISE CONVERGENCE OF
SEQUENCE OF FUNCTIONS

14.2.1 Definitions

Definition 1. Let {f, },—; be a sequence of real-valued functions on a
set E. We say that {f;,}s—;, converge to the function f on E if
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lim, o fr(x) = f(x) (X EE) i (D

If (1) holds we sometimes say that {f,,}n=; converge pointwise to f
on E. For if (1) holds, then, for every point x of E, the sequence

{f(xX)};=1 of real numbers converges to f(x). Here are several
examples.
If

fa(x) = x" (0<x<1),

then{f,, }n=1 converges to f on [0,1] where

fx)=0 (0<x<1)
f() =1
For a second example let
gn(®) = (0 < x < ).
Ifx > 0,then0 < g,(x) < ;—x = 1/n. Hence
lim, e gn(x) =0 (x> 0).

Also, since g, (0) = 0 for each n € [, it is clear that {g,,(x) }n=1

converge to 0 (the function identically 0) on [0, ).

nx

ha(%) = 5= (—0 < x < ).
Then if x > 0 we have
1/nx
() = ———
(nzxz) +1

And hence lim,,_,, h,(x) = 0. Since h,,(0) = 0 for each n € I we see
that {h, (x)}5=1.

For a fourth example let x,, denote the characteristic function
of [-n,n]. For any x € R! we have y,,(x) = ynt1(X) = Yni2(x) =
- = 1 provided n > |x|. (For then x € [—n,n]). Hence

limp e X7 (%) = 1 (x € RY),



And so {y,}n=1 converges to 1 on (—oo, ).

Definition 2. According to definition 1, the sequence of functions
{fn(x)};=1 converges to f on the set E if, for each x € E, given € > 0
there exists N € I such that

lfn(x) —f(x)| <e¢ M=N). e (D)

In general, the number N depends on both ¢ and x. It is not always
possible to find an N such that (1) holds for all x in E simultaniously.

For example, if f,(x) = x™ (0 < x < 1), then, as we have seen,
{fn(X)}=1 converges to f on [0,1] where f(x) =0 (0 <x < 1) and
f(1) =1. With € = %, then, for each x € E, there exists N € I such
that

TACI RS {CO R C 1= ') N— 2)

If x=0 or x =1, then (2) is true for N = 1. However, if x =%

0.75, then the smallest value of N for which (2) is true is N = 3. For,
n
if x = Z, then f,(x) = G) while f(x) =0. Thus, |f,(x) — f(x)| =
n n
G) ,and G) < %if and only if n > 3.
Similarly, if x = 0.9 then the smallest value of N for which (2) is true
isN=7.

Indeed, there is no N € I such that (2) holds simultaneously
forall x € [0,1].

For, if such an N existed, we would have
1
x" < E (n = N)
For all x in [0,1]. This implies x™ <§ (0<x<1). Letting x - 1~
we obtain the contradiction 1 < %

For the second example, the story is different. For, if

X
1+nx

gn(x) = (0=<x <o),

Then 0 < g(x) <1/n (1 < x < ). Hence, for any € > 0 the
statement

lgn(x) — 0| < ¢ (M=N) i 3)
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Is true for all x in [0, c0) simultaneously, provided only that N > 1/e.
(For in this case |g,(x) — 0] < % < % < ¢ for all x in [0, 00).) Thus for
this sequence {g,(x)}n=; an N € I can be found such that (3) holds
for all x € I. This N depends only on € and not on x.

Now consider

nx
1+n2x2

hn(x) = (—o0 < x < o0).

We have seen that {h,(x)};=; converges to 0 on (—oo,). Given
€ > 0, we know therefore that for each x € (—o0, ) there exists
N € [ such that

lh,(x) — 0| <¢ (M=N). e, (4)

1 1 ) 1 . .
However, note that h, (Z) = Hence, if € = > there is no single

N € I such that (4) holds simultaneously for all x € (—o0, ). For if
such an N existed we would have

hy (x) <% (—0 < x < ).

But if x = 1/N this a contradiction.

We leave it to the reader to show that if € < 1 then there is no
N € I such that the statement

lx,(x) —1l<e (mn=N)

Holds for all real x simultaneously, where y, is as in the fourth
example.

14.3 UNIFORM CONVERGENCE OF
SEQUENCE OF FUNCTIONS

We have agreed to say that {f;,,(x)};=, converges (pointwise) to f on
E if, each x € E, given € > 0 there exists N € [ such that

lfi(x) — f(x)| < e (M=N). (1)

We have seen several examples in which in which it is impossible to
find an N such that (1) holds for all x € E simultaneously.

If for each € > 0 it is possible to find an N such that (1) holds
for all x € E then we say that {f,,(x)};=, converges uniformly to f on
E.



Definition 3. Let {f,,(x)},=, be a sequence of real-valued function on
a set E. We say that {f,,(x)},=, converges uniformly to the function f
on E if given € > 0 there exists N € I such that

Ifn () — f(0)| <& (n > N;x € E).

The wording of this definition implies that N depends on ¢
but not on x. It is clear that if {f,,(x)};~, converges uniformly to f on
E, then {f,(x)};=, converges poitwise to fon E.

x
(1+nx)

Thus, if g,(x) = (0 £ x < ), then our work in

previous section shows that {g,,(x)},=, converges uniformly to 0 on
[0,00). For we have already shown that given &€ > 0 there exists
N € I such that

|gn(x) — 0] <& (n=N;0 < x < ),
(Any N such that N > 1/¢ will do).

It is not too easy to state what it means for the sequence
{fi}n=1 not to converge uniformly to f on E. We shall now do this.

Corollary 1. The sequence {f,},~; does not converge uniformly to f
on E if and only if there exists some € > 0 such that thereisno N € [
for which the statement

Ifu(x) — f)] < e (n=N;x €E)
holds.

The reader should not proceed until he is convinced that this
section is equivalent to the previous section.

If f,(x)=x" (0<x<1) and f(x)=0 (0<x<1),
f(1) =1, then we have seen that {f,};=; converges pointwise to f
on [0,1]. However, {f,}n=, dose not converge uniformly to f on [0,1].

For, as we saw in Definition 2, if € = % then there is no N € [ such

that
Ifn() —f(X)|<e m=N;0<x<1).

If E is an interval of real numbers then it is readily seen that saying
{fu}nz1 converges uniformly to f on E means that given € > 0 there
exists N € I such that the vertical distance from any point on the
graph of f to the corresponding point on the graph of any of the
functions fy, fy+1, -~ is less than e. Thus, if {f,}n=; converges
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uniformly to f on E, then the graphs of fy, fy4+1, --- are all “uniformly
close” to the graph of f.

In particularly, if {f,}n=1 converges to zero uniformly on E,
then given &€ > 0 there exists N € I such that the graphs of fy, fy+1, -
are all within vertical distance ¢ of the x — axis.

Here is still another way to view uniform convergence.

Definition 4. If {f,},-; converges uniformly to Oon E, then given
€ > 0 there exists N such that

Ifi(x)|<e (n=N;x€E).
This implies
b0l <e  (n=N).
Hence, if {f,,}5=1 converges uniformly to zero on E, then

1m0 S £, ()| = 0. oo, (1)

Conversely, it not difficult to show that if (1) holds then {f,}5-;
converges uniformly to 0 on E.

This readily proves that the sequence {h,},;-, of section 14.1
does not converge uniformly to zero on (—oo, ). For

h<1>|—1 mh=12.)
()| =3 n=12..),

—ocsit i ()] =

and hence _, %Z|h,,(x)| cannot approach zero as n — oo,

Definition 5. From Definition 3 it follows immediately that {f,},-
converges uniformly to f on E if and only if {f,, — f};=,; converges
uniformly to 0 on E. From Definition 4 we then have

Theorem 1. The sequence of function {f, },-; converges uniformly to
f on E if and only if

Lubif (x) — f(x)] >0 as n— oo,

14.3.1 Cauchy Criterion for Uniform Convergence
In this subsection, the Cauchy criterion for uniform
convergence. It is analogues to the result that a sequence of real

numbers is convergent If and only if it is Cauchy.



Theorem 2. Let {f,,},—; be a sequence of real-valued functions on a
set E. Then {f,,};=; is uniformly convergent on E (to some function
f) if and only if given € > 0 there exists N € I such that

() —f(X)|<e (MNZN;XEE). oo (1)

Proof. Suppose first that {f, }=; is a uniformly convergent sequence
of functions on E, converging to f on E. Then, given € > 0, there
exists N € [ such that

LG -f@I<s  @2Nx€b).
Thus, if m,n = N we have, for any x € E,
() = fu(OI < 1fin(0) = FOOI + £ () = fo ()]
<>+>
and hence (1) holds for this N.

Conversely let {f,,},—, be any sequence of functions on E such
that, given € > 0, there exists N € I such that (1) holds. We must
show that there is a function f on E such that {f,},—,; converges
uniformly to f on E. From (1) we see that, for each fixed x € E, the
sequence of real numbers {f,,(x)}n=, is a Cauchy sequence. Hence
My 00 fn (X) exists for each x € E. Define f by

f) = lim i) (xEE).
Keeping m fixed in (1) and letting n — oo we obtain
lfn() —fX)|<e (m=N;x€E).

Since € was arbitrary, this shows that {f;,};,—; converges uniformly
to f on E, and the proof is complete.

The next results, called Dini’s theorem, shows that under a
very special set of circumstances a sequence of continuous functions
must converge uniformly.

Theorem 3. Let {f,};,—; be a sequence of continuous real-valued
functions on the compact metric space (M, p) such that

i) < fo(x) < < fulx) < - (xEM). v (D

If {f,}n=1 converges (pointwise) on M to the continuous function f,
then {f,,}s=, converges uniformly to f on M.
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Proof. For eachn € I let g,, = f — f,. Then from (1) we have

g1(x) = g,(x) == gp(x) = - (X EM). oo (2)

Also, since {f;, };=1 converges to f on M we have
lim, 4 gn(x) =0 (X EM). v 3
We must show that {g,,}5—; converges uniformly to 0 on M.

Fix € > 0. If x € M, then (3) assures us of the existence of
N(x) € I such that

&
IN(x) (x) < E

Since gy () is continuous at x, there is an open ball B, about x such
that

I (x) <& (v € By).

The B, for all x € M from an open covering of M. Since this a finite
number of the B,—say
By, Bx,s s By

k

also cover M. Let N = max[N(x;), ..., N(x;)]. Now if y is any point in
M, theny € ij for somej =1, ..., k. Hence

InG,) V) <&
But since N(x;) < N, (2) implies
INGY) = Gn(e) O)-
Hence
0<gyv(y)<e
For all y € M. But then (2) shows that
0<gn(y)<e (n=N;y e M),

And so {g,}n=1 converges uniformly to 0 on M. This completes the
proof.

It is clear that Theorem 3 remains true if the inequality signs in (1)
are all reversed. For then we could set g, = f — f,, and proceed as
above.



Check your progress
1. Define converge pointwise.
2. Define convergent sequence of functions.
144 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Let{f,}n=1 be a sequence of real-valued functions on a set
E. We say that {f,,},—; converge to the function f on E if
limy, o fn (%) = f(x) (x EE)

If (1) holds we sometimes say that {f,},—; converge
pointwise to f on E. For if (1) holds, then, for every
point x of E, the sequence

{f(x)}5=1 of real numbers converges to f(x).

2. The sequence of functions {f,(x)};=,; converges to f on
the set E if, for each x € E, given € > 0 there exists N € |
such that
Ifn() = f) < e (n = N).

In general, the number N depends on both ¢ and x.
14.5 SUMMARY

The sequence of function {f,},~; converges uniformly to f on
E if and only if

Lub) g (x) — f(x)] > 0 as n— oo,

Let {f,}n=1 be a sequence of real-valued functions on a set E.
We say that {f,,}5=, converge to the function f on E if

limy, e fr(x) = f(x) (x €E)

If (1) holds we sometimes say that {f,}n-; converge
pointwise to f on E. For if (1) holds, then, for every
point x of E, the sequence

The sequence of functions {f,,(x)},-, converges to f on the set
E if, for each x € E, given € > 0 there exists N € [ such that

|fn() = fO)] <e (n = N).

In general, the number N depends on both € and x.
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o Let {f,}n=1 be a sequence of real-valued functions on a set E.
Then {f,},=; is uniformly convergent on E (to some function f) if
and only if given € > 0 there exists N € I such that

Ifn(x) —f(X)| <e (mn=N;x€E).

o Let {f,}n=, be a sequence of continuous real-valued functions
on the compact metric space (M, p) such that

i) £ fox) < < fulx) < - (x € M).

14.6 KEYWORDS

Converges uniformly: Let {f,,(x)},-,; be a sequence of real-valued
function on a set E. We say that {f,(x)},=,; converges uniformly to
the function f on E if given € > 0 there exists N € I such that

Ifu(x) — f(0)] < e (n= N;x € E).
14.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

1) If {fu}n=1 and {g,}n=1 converges uniformly on E, prove that
{fu + gn}n=1 converges uniformly on E.

2) Let A be a dense subset of the metric space M. If {f,,},—; is a
sequence of continuous functions on M, and if {f,},-; converges
uniformly on 4, prove that {f;,, },=, converges uniformly on M.

3) The uniform limit of a sequence of discontinuous functions
can be continuous.

4) If {fu}n=1 is a sequence of functions which converges
uniformly to the continuous function f on (—o0, ), prove that

lim, o fy (x + %) =f(x) (o0 <x< ).
5) If (f,) > f and each f, and f are continuous then the
convergence is uniform.
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