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INTRODUCTION 

Analysis is the branch of mathematics that deals with 

inequalities and limits. The present course deals with the most basic 

concepts in analysis. The goal of the course is to acquaint the reader 

with rigorous proofs in analysis and also to set a firm foundation for 

calculus of one variable. 

Calculus has prepared you, the student, for using 

mathematics without telling you why what you learned is true. To 

use, or teach, mathematics effectively, you cannot simply know what 

is true, you must know why it is true. This course shows you why 

calculus is true. It is here to give you a good understanding of the 

concept of a limit, the derivative, and the integral. Let us use an 

analogy.  

We start with a discussion of the real number system, most 

importantly its completeness property, which is the basis for all that 

comes after. We then discuss the simplest form of a limit, the limit of 

a sequence. Afterwards, we study functions of one variable, 

continuity, and the derivative. Next, we define the Riemann integral 

and prove the fundamental theorem of calculus. We discuss 

sequences of functions and the interchange of limits. Finally, we give 

an introduction to metric spaces.  

The term real analysis is a little bit of a misnomer. I prefer to 

use simply analysis. The other type of analysis, complex analysis, 

really builds up on the present material, rather than being distinct. 

Furthermore, a more advanced course on real analysis would talk 

about complex numbers often. I suspect the nomenclature is 

historical baggage. 
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BLOCK- I 
SETS, FUNCTIONS AND METRIC SPACES 

 

UNIT-I SETS AND FUNCTION 
Structure 

1.0 Introduction 

 1.1 Objective 

1.2 Sets and Function 

      1.2.1 Intervals in ℝ  

1.3 Countable Sets 

1.4 Uncountable Sets 

1.5 Inequalities of Holder and Minkowski 

1.6 Answers to Check Your Progress Questions 

1.7 Summary 

1.8 Keywords 

1.9 Self Assessment Questions and Exercises 

1.10 Further Readings 

1.0 INTRODUCTION 
In this chapter we introduce concepts which we need in the 

sequel. 

1.1 OBJECTIVE 
After going through this unit, you will be able to: 

 Understand what is meant by sets and functions. 

 Discuss intervals in ℝ. 

 Describe countable and uncountable sets. 

1.2  SETS AND FUNCTIONS 
The concepts of sets and functions are indispensable to 

almost all branches of pure mathematics. The usual material of 

elementary set theory is so current that we take it for granted. We 

freely use the following notations of set theory. 

 

Sets and functions 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

(i)   is a subset of   written as    . 

(ii) Union of two sets   and   written as    . 

(iii) Intersection of two sets   and   written as    . 

(iv) Complement of subset of   of   written as   . 

(v) Difference of two sets   and   written as    . 

(vi) Cartesian product of two sets   and   written as    . 

(vii) A function    a set   to a set   written as      . 

(viii) The empty set which contains no elements is denoted 

by  . 

            Certain letters are reserved to denote particular sets which 

occur often in our discussion. They are  

  , the set of all natural numbers. 

  , the set of all integers. 

  , the set of all rational numbers. 

   , the set of all positive rational numbers. 

 ℝ, the set of all real numbers. 

 ℝ , the set of all ordered n-tuples              of real 

numbers. 

  , the set of all complex numbers. 

   , the set of all ordered n-tuples              of complex 

numbers. 

            The concept of union and intersection can be extended to any 

collection of sets. Let   be a nonempty set. For each       let    be a set. 

Then we say that           is a family of sets indexed by the set  . 

           We define                                         and                                                         

                                                             . 

Example 1. For each    . Let         1         . Therefore, 

    1 2        2       . Then           is a family of sets 

indexed by  . Here      1 2             and      .    

Note 1.        is also written as    
 
    and        as    

 
   . 

Note 2. The distributive laws for union and intersection and De 

Morgan’s laws for finite number of sets can be generalized to any 

collection of sets as follows.  

(i)              
 

   . 

(ii)              
 .    

(iii)                   .      

(iv)                      . 

1.2.1  INTERVALS IN ℝ 
Let      ℝ and    . Then 

(i)            ℝ             is a called the open 

interval with   and   as end points.   
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(ii)            ℝ             is a called the closed 

interval with   and   as end points.  

(iii)            ℝ             is a called the open-

closed interval with   and   as end points.  

(iv)            ℝ             is a called the closed-

open interval with   and   as end points. 

(v)            ℝ           . 

(vi)            ℝ          . 

(vii)             ℝ          . 

(viii)             ℝ          . 

(ix)        ℝ. 

      Any subset of ℝ which is one of the above forms is called an 

interval. Any interval of the form (i),(ii),(iii) or (iv) is called a finite 

interval or bounded interval and any interval of the form (v), (vi), 

(vii), (viii) or (ix) is called an infinite interval or an unbounded 

interval.  

      The singleton set     is considered to be a degenerated closed 

interval      . 

1.3  COUNTABLE SETS 
In this section we introduce the notation of countability and 

uncountability of a set. If a set   is finite then we can actually count 

the number of elements in this set. In other words we can label the 

elements of   by using the natural number 1 2     for some   and 

the number of elements in this set   in  . 

      In this case there exists a bijection from   to   are two 

finite sets having the same number of elements, then there exists a 

bijection from   to  . 

Definition.  Two sets   and   are said to be equivalent if there exists a 

bijection   from   to  . 

Note. From what we have seen above, two finite sets   and  are 

equivalent iff they have the same number of elements. Hence a finite 

set cannot be equivalent to a proper subset of itself. However, the 

infinite set can be equivalent to a proper subset as seen in the 

following examples.  

Example 1. Let     and    2       2    . 

                 Then       defined by      2  is a bijection. Hence   

is equivalent to   even though   has actually ‘more’ elements than  . 

Definition. A set   is set to be countably infinite if   is equivalent to 

the set of natural numbers  . 

A is said to be countable if it is finite or countably infinite. 
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Note. Let   be a countably infinite set. Then there is a bijection   from 

  to  . Let   1       2                . Then                                     

                . 

Thus all the elements of   can be labeled by using the elements of  . 

Example 1.  2       2     is a countable set.  

Example 2.   is countable (refer example 2). 

Theorem 1. A subset of a countable set is countable. 

Proof. Let   be a countable set and let    . 

            If   or   is finite, then obviously   is countable. 

            Hence let   and   be both infinite. 

            Since   is countably infinite, we can write   

              . Let    
 be the first element in   such that  

   
   . Let    

 be the second element in   which follows    
 

such that    
   .                                                                                                                                                                                                                                                                                                                                                                                        

             Proceeding like this we get       
     

    . Thus all 

the elements of   can be labelled by using the elements of N. 

Hence   is countable. 

Theorem 2.    is countable. 

Proof. Take all positive rational numbers whose numerator 

and denominator add up to 2. We have only one number 

namely 
 

 
.                                         

              Next we take all positive rational numbers whose numerator 

and denominator add up to 3. We have 
 

 
 and 

 

 
. 

              Next we take all positive rational numbers whose numerator 

and denominator add up to 4. We have 
 

 
 
 

 
 and   

 

 
.                                                                                                                                                                                                                

                Proceeding like this, we can list all the positive rational 

numbers together from the beginning omitting those which are 

already listed.                                                                                                   

               Thus we obtain the set  1 
  

 
 2   

 

 
 

 

 
 
 

 
 
 

 
     . This set 

contains every positive rational number each occurring exactly once. 

Thus    is countable. 

                                                                                                                                                                                                              

Theorem 3.   is countable.  

Proof. We know that   is countable. Let                  .  

             Therefore,                      . 
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             Let       be defined by   1      2      and 

  2  1     .  

             Clearly, f is a bijection and hence   is countable. 

Theorem 4.     is countable.                                                                                                                                                       

Proof.                   .  

Take all ordered pairs       such that     2.  

            There is only one such pair namely  1 1 . 

            Next take all ordered pairs       such that      . 

            We have  1 2  and  2 1 . 

            Next take all ordered pair       such that      . 

           We have    1   2 2  and  1   . 

            Proceeding like this and listing all the ordered pairs together 

from the beginning, we get the set 

  1 1   1 2   2 1     1   2 2   1      . This set contains every 

ordered pair belonging to     exactly once. 

             Thus     is countable.  

Theorem 5. If   and   are countable sets then     is also countable. 

Proof. We assume that   and   are countably infinite.  

 Let                                  . 

 Now define            by               . 

 We claim that   is a bijection. 

 Suppose              and             . 

 Now, 

                          

                                                                                      

                                                                            and     

                                                                           . 

    is 1-1. 

 Now, suppose             . 

 Then            and                . 

 Therefore,   is onto. Hence   is a bijection.  

 Hence     is equivalent to     which 

is countable. (refer Theorem 4) 

 Hence     is countable.  
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Theorem 6. Let   be a countably infinite set and   be a mapping of   

onto a set  . Then   is countable.   

 Proof. Let A be a countably infinite set and       be an onto map. 

             Let     . Since   is onto, there exist at least one pre-image 

for  . Choose one element     such that         . 

             Now, define       by         .  

            Clearly,   is 1  1. 

Therefore,   is equivalent to a subset of the countable set A.  

           Therefore,   is countable.  (by theorem 1) 

Theorem 7. Countable union of countable sets is countable. 

Proof. Let                  be a countable family of countable 

sets. 

Case (i) Let each    be countably infinite.  

              Let                                                                                                                                     

                                              

                                  

               

                                            

              

               

 Now we define a map           by           . 

 Clearly   is onto. 

 Also by theorem 4,     is countably infinite. 

 Hence by theorem 6,     is countably infinite.  

Case (ii) Let each    be countable.  

 For each   choose a set    such that    is a countably 

infinite set and      . 

 Now,        .  

 Now,     is countable (by case (i)). 

 Therefore,     is countable. (theorem 1). 
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Problem 1. Any countable infinite set is equivalent to a proper subset 

of itself. 

Solution. Let   be a countably infinite set. 

 Hence                 . 

 Let                  

 Clearly   is a proper subset of  . 

 Define a map       by           . 

 Clearly   is a bijection. Hence   is equivalent to  . 

Problem 2. Any infinite set contains a countably infinite subset. 

Solution. Let   be an infinite set. 

Choose any element     . 

Now, since   is infinite set, we can choose another element, 

         . 

Now, suppose we have chosen            from  . 

Since   is infinite,                is also infinite. 

  We can choose      from               . 

Now,                       is countably infinite subset of  . 

 

Problem 3. Any infinite set is equivalent to a proper subset of itself. 

Solution. Let   be an infinite set. 

 By problem 2 above,   contains a countably infinite 

subset                  . 

 Clearly                              . 

 Clearly   is a proper subset of  . 

 Consider the function       defined by          if 

      and           . 

 Obviously   is a bijection. Hence   is equivalent to  . 

1.4  UNCOUNTABLE SETS 
Definition. A set which is not countable is called uncountable.  All 

the infinite sets we have considered in the previous section are 

countable.We shall now give an example of an uncountable set. 

Theorem 8.    1  is uncountable.  

Proof. Every real number in    1  can be written uniquely as a non-

terminating decimal  .          where        for each   
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subject to the following restriction that any terminating decimal 

.             is written as  .          1       

 For example        .     .      . 

                                                     1   .    . 

 Suppose    1  is countable. 

 Then the elements of    1  can be listed as 

              where  

                            .                                                                                                                           

                            .             

                                  

               

                         .              

              

               

 Now, for each positive integer   choose an interger    

such that        and      and       . 

 Let    .          

 Clearly       1 .  

 Also   is different from each    at least in the   th place.  

 Hence      for each   which is a contradiction. 

 Hence    1  is uncountable. 

Corollary 1. Any subset   of ℝ which contains    1  is uncountable. 

Proof. Suppose   is uncountable.  

 Therefore, by theorem 1 any subset of   is countable. 

Hence we get    1  is countable which is a contradiction. Therefore,   

is uncountable. 
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Corollary 2. The set   of irrational numbers is uncountable. 

Proof. Suppose S is countable. 

 We know   is countable. 

 Therefore,     ℝ is countable which is a 

contradiction. (by corollary 1). Therefore, S is uncountable. 

1.5 INEQUALITIES OF HOLDER AND 
MINKOWSKI 

Theorem 9  Holder’s Inequality . If   1 and   is such that 
 

 
 

 

 
 1 

then 

       

 

   

      

 

   

   

 
  

     

 

   

   

 
  

 

 

where            and           are real numbers. 

Proof. First we prove the inequality 

                      
 

   
 

   
 

 
 

 

 
 where      and    .  

 Now, let      . Consider              1 where 

  
 

 
 and    . 

 Then                        1 . 

    1     1   .  

 Also         for     1 and         for   1. 

         for all     and in particular   
 

 
   .  

    
 

 
   

 

 
 

 

   1   .  

   
 

 
 

 
  

 
 

 
 

 

 
  

 

 
 1   .  

 Multiplying by y we get  
 

       
    

 

 
  1  

 

 
    . 
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  .        (since 1  

 

 
 

 

 
  ).                                                          

 
 

   
 

   
 

 
 

 

 
.   

 Now to prove Holder’s inequality  we apply the above 

inequality to the numbers   
    

 

    
 
     

 ;    
    

 

    
 
     

 for each 

  1 2    . 

We get 

        

     
 
      

 
       

 
      

 
  
  

  

 
 

  

 
  

for all   1 2    . 

Adding these n inequalities we get           

  

          
 
   

     
 
      

 
       

 
      

 
  
    

  

 
 

  

 
 

 

   

 
(1) 

 

Now,   
  

 
 

  

 
  

    
 

 
     

   
 

 
   

 
    

                                   
 

 
 

 

 
 (since        

 
    1 

   ) 

                                   1. 

Using this in (1) we get          
 
         

 
      

 
       

 
      

 
   

       
 
         

 
      

 
       

 
      

 
   

Note. If we put   2    in Holder’s inequality we get the following 

inequality which is known as Cauchy-Schwarz inequality. 
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Theorem 10.  Minkowski’s Inequality  

If p 1           
  

    
 

        
 
      

 
       

 
      

 
  , where 

           and           are real numbers. 

Proof. This inequality is trivial when   1. Let   1. 

Clearly,  

 

         
 

 

   

 

 
  

              
 

 

   

 

 
  

 

 

(1) 

   

Now,                           
  

                
              

 
    

                                                   
                    

   

 

   

 

   

 

        
 

 

   

 

 
  

             
      

 

   

 

 
  

       
 

 

   

 

 
  

             
      

 

   

 

 
  

 

 Where 
 

 
 

 

 
 1.  using Holder’s inequality .  

Now, since  
 

 
 

 

 
 1. we have       . 

Hence    1    . 

  Dividing by              
  

    
 

   we get  

             
 

 

   

 

   
  

       
 

 

   

 

 
  

       
 

 

   

 

 
  

 

 

              
 

 

   

 

 
  

       
 

 

   

 

 
  

       
 

 

   

 

 
  

 

 

 
 
(2) 

From (1) and (2) we get the required inequality. 
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CHECK YOUR PROGRESS 
 

1. Show that   is equivalent to  . 

2. Prove that the set  
 

 
 
 

 
 
 

 
    is countable. 

3. Show that ℝ is uncountable. 
 
 

1.6 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. The function       defined by 

      

 

2
             

1   

2
            

  

is bijection. Hence   is equivalent  . 

2. Let    
 

 
 
 

 
 
 

 
   . The function       defined by 

     
 

   
 is a bijection. Hence   is countable. 

3. The results follows directly by taking   ℝ in theorem 8. 

1.7 SUMMARY 
1.   is a subset of   written as    . Union of two sets   and   

written as    . Intersection of two sets   and   written as    . 

Complement of subset of   of   written as   . Difference of two sets 

  and   written as    . Cartesian product of two sets   and   

written as    . A function    a set   to a set   written as      . 

The empty set which contains no elements is denoted by  . 

2. Two sets   and   are said to be equivalent if there exists a 

bijection   from   to  . 

3. The concept of union and intersection can be extended to 

any collection of sets. 

4. Any subset of ℝ which is one of the above forms is called 

an interval.  

5. Any interval of the form                         is 

called a finite interval or bounded interval and any interval of the 

form                                  is called an infinite 

interval or an unbounded interval.  

6. The singleton set     is considered to be a degenerated 

closed interval      . 

7. A set   is set to be countably infinite if   is equivalent to 

the set of natural numbers  . 

8. A is said to be countable if it is finite or countably infinite. 
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9. A set which is not countable is called uncountable.  All 

the infinite sets we have considered in the previous section 

are countable.We shall now give an example of an 

uncountable set. 

1.8 KEYWORDS 
1. Interval: Any subset of ℝ which is one of the above forms is 

called an interval.  

2. Open Interval:            ℝ            . 

3. Closed Interval:            ℝ            . 

4. Open-Closed Interval:            ℝ            . 

5. Closed-Open Interval:            ℝ            . 

6. Finite interval or bounded interval:  Any interval of the form 

                        is called a finite interval or bounded 

interval.  

7. Infinite interval or an unbounded interval:Any interval of the 

form                                  is called an 

infinite interval or an unbounded interval.  

8. Countably Infinite : a set   is set to be countably infinite if   is 

equivalent to the set of natural numbers  .                                                  

10. Countable: A is said to be countable if it is finite or countably 

infinite. 

11. Uncountable: A set which is not countable is called 

uncountable.   

12. Equivalent: Two sets   and   are said to be equivalent if there 

exists a bijection   from   to  . 

1.9 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Let    1 2          and    1            . Show 

that A and B are equivalent. 

2. Show that   and    1 1 1 2 1      are equivalent. 

3. Show that for any two sets A and B, the set     is 

equivalent to the set    . 

4. Prove that the set of all even integers is countably infinite. 

5. Prove that the set of all points       in the Euclidean 

plane with rational coefficient is countable. 

6. Prove that   is uncountable. 

7. Prove that the set of all irrational numbers lying in the 

interval    1  is uncountable. 

 

 

 

 

 

Sets and functions 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 
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UNIT-2 METRIC SPACES 
Structure  

              2.0 Introduction  

2.1 Objective 

2.2 Definition and Examples  

2.3 Limits in Metric Spaces 

2.4 Continuous Functions on Metric Spaces 

2.5 Answer to Check Your Progress Questions 

2.6 Summary 

2.7 Key Words 

2.8 Self Assessment Questions and Exercises 

2.9 Further Readings 

2.0 INTRODUCTION 
The concept of convergence of sequences of real numbers 

depends on the absolute value of the difference between any two 

real numbers. We observe that this absolute is nothing but the 

distance between the two numbers when they are considered as 

points on the real lin. For the study of the concepts like continuity 

and convergence the algebraic properties of ℝ are irrelevant. This 

situation necessitates the study of sets in which a reasonable 

notation of distance is defined. A set equipped with a reasonable 

concept of distance is called a metric space. In this chapter we 

develop in a systematic manner the main facts about metric spaces.   

2.1 OBJECTIVE 

After going through this unit, you will be able to: 

 Understand what is meant by metric spaces. 

 Discuss limits in metric spaces. 

 Describe continuous functions on metric spaces. 
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2.2 METRIC SPACES 

Definition. A metric space is a non-empty set   together with a 

function       ℝ  

Satisfying the following conditions. 

               (i)            for all     in   

                (ii)                             

                (iii)              for all     in   

               (iv)                       for all      and   in  . 

  is called a metric or distance function and        is called the 

distance between   and  . 

Note. The metric space   with metric   is denoted by       or simply 

by  . In the previous definition (i) and (ii) are  known as the non-

negative property, (iii) as the symmetry and (iv) as the triangle   

inequality of the  metric. we shall give below many examples of metric 

spaces. 

Example 1.  The function   defined by              is a metric for 

the set  ℝ of real numbers.   With this distance function, ℝ is a metric 

space denoted by  ℝ   . This metric   is called the usual metric for ℝ. 

 Proof. (i)              is a non-negative real number and 

         iff        . This implies and implied by    . 

(ii)                             . 

(iii)                                   . 

That is                     . 

Example 2. If                     are any two points in ℝ , we 

can define three metrics       and    from ℝ  ℝ  into ℝ as follows: 

                                   (1) 

                               (2) 

         ma                           (3) 

We shall verify that (1), (2) and (3) satisfy all the requirements 

of a metric. 
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Let                      and           be any three 

points of  ℝ . For providing (1) to be a metric, we as follows: 

(i) Since        
  and        

  are non-negative real numbers, 

we see that (1) is non-negative. Hence, we see that         . 

(ii) The     implies and is implied by       and       so that 

        . Hence          if and only if    . 

(iii)                           

                           

Hence, we have              . 

(i)                           

                               

If                                  and 

          , we have                          . 

By applying Minkowski’s inequality  we get 

                       
    

       
    

  . 

Substituting for           and   , we get                

      . Which proves the triangle inequality. 

In the case of (2), we proceed as follows: 

(i) Since           and          , it follows that 

                         . 

(ii) The     implies and is implied by                 so that 

      and      . Hence           . Hence           . 

From this, we get                   which proves that 

          if and only if    . 

(iii)                         

                               .  
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       (iv)                                          

         . 

By using the property of the absolute value function, 

                                         

                                    

                .  

Hence, we have                     . 

To verify (3) to be a metric, first note that by ma       

            , we mean the greater of the two numbers         

and         .           

(i) Since         and         are non-negative numbers, 

  ma                   >0 

so that          . 

(ii)     implies and is implied by       and       so that   

          and            . From this, we get ma       

               if and only if    . 

This proves that           iff    . 

(iii)         ma                    ma      

                    . 

(iv) To verify the triangle inequality, 

                   ma                    ma             

                   

If                                         then 

                  ma                   . 

Since the argument is similar to the contrary case, let us 

assume that                      and also 

 ma                          . 

Now,                      and                     . 

Hence,                             
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So ma                                              

                

Therefore,                          which proves the 

triangle inequality. 

Example 3. On any non-empty set   we define   as follows 

        
        
1       .

  

Then   is a metric on  .  This is called the discrete metric on  . 

Proof. Clearly,          and           . 

Also                
        
1       .

  

                for all      . 

Now let        . 

Case (i)     

Then         . 

Also,                . 

                      . 

Case (ii)     

Then        1. 

Also, since     are distinct,   can not be equal to both   and  . 

Hence either     or    . 

                1.  

                      .  

Thus                      for all        . 

Hence   is a metric  . 

Example 4. In ℝ  we define 
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Where                and               . Then   is a metric on 

ℝ . This is called the usual metric on ℝ . 

Proof.                 
  

    
 

    . 

                   
  

    
 

    .  

                        
  

      for all   1 2  .   . 

                 for all   1 2    . 

                                    . 

             .  

Also,                 
  

    
 

   

                       
  

    
 

    

                    .  

To prove the triangle inequality, take  

         ;          and   2 in Minkowski’s inequality 

we get,  

         
 

 

   

 

 
  

          
 

 

   

 

 
  

          
 

 

   

 

 
  

 

i.e.,                    . 

    is metric on ℝ . 

Note. ℝ  with usual metric is called the n-dimensional Euclidean space. 

Example 5. Consider ℝ . Let   1. We define               
   

   
  

 
    

Where                and               . Then   is a 

metric on ℝ .   

The proof is similar to that of example 4.  

Example 6. Consider ℝ . Let   1. Let    denote the set of all sequence 

     such that       
  is convergent. Define               

   

   
  

 
   

Where                and               .  
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Then   is a metric on    . 

Proof. Let       . 

First we prove        is a real number. 

By Minkowshi’s inequality we have 

          
  

    
 

         
  

    
 

         
  

    
 

   .. 1  

Since       . the right hand side of (1) has a finite limit as 

   .  

           
  

    
 

  is a convergent series. 

Similarly we can prove that          
  

    
 

   is also a 

convergent series and hence        is a real number. 

Now, taking the limit as     in (1) we get  

          
  

    
 

         
  

    
 

         
  

    
 

   .. 2  

Obviously           

          iff    .  

And              . 

Now, let         . Taking,         ;          in (2) we 

get  

         
 

 

   

 

 
  

          
 

 

   

 

 
  

          
 

 

   

 

 
  

 

i.e.,                    . 

    is metric on   . 

Example 7. Let   be the set of all sequence in ℝ. Let       and let 

       and       .  

Define 

        
       

2  1          

 

   

 

Then   is a metric on   . 

Proof. Let      . First we prove that        is a real number   . 
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We have 
       

             
 

 

   for all  . 

Also,  
 

  
 
    is a convergent series.  

   
       

             
 
    is a convergent series.   (by comparison 

test) 

         is a real number and         . 

Now,  

          
       

2  1          

 

   

  . 

            for all  . 

        for all  . 

     .  

Also,         
       

             
 
    

                       
       

             
 
     

                                 .  

Now, let        . Then  

 
       

         
 1  

 

         
 1  

 

                   
  

   
               

                   
  

   
       

                   
 

       

                   
  

   
       

           
 

       

           
  

Multiplying both side of this inequality by 
 

   and take the sum 

from   1 to   we get                     . 

    is metric on  . 

Example 8. Let    and    be two metrics on   . Define        

               . Prove that   is a metric space on  . 

Solution.                         . 
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                           .  

            and          .  

     .  

Now,                        

                     

          .  

Let        . Then we have  

                         and  

                        . 

Adding, we get                     . 

    is a metric on  . 

Example 9. Determine whether        defined on ℝ by        

       is a metric or not. 

Solution. Let     ℝ. 

                .  

                       

         .  

But triangle inequality does not hold. 

Take           and     

Then                1 

                               

                 1.  

Here                      

Hence triangle inequality does not hold.  

    is not a metric on ℝ. 

2.3 LIMITS OF FUNCTIONS IN METRIC SPACES 
For defining limits of functions in metric spaces, we need the 

notation of cluster points in a set and so we explain it briefly. 
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Definition. Let       be a metric space and   be a subset of  . 

    is called a cluster point or a limit point of   if for every    , 

there exists a     distinct from   such that         .  

That is,   is a cluster point of  , if there are points of   

distinct from   which are arbitrarily close to  . It must be noted that 

the cluster point may or may not belong to the set. 

Example 1. The set of cluster points of      1  in ℝ is    1 . 

No point outside    1  can be a cluster point of    1 . 0 and 1 

are cluster points of  . Since for every      we can find a point of 

   1  in       distinct from 0. Similarly for the point 1 and other 

points of (0,1). Hence, the set of cluster points of    1  in ℝ is    1 .   

Example 2. The set of cluster points of    1  in ℝ  is empty. 

No point of ℝ can be a cluster point of    1  in ℝ . Suppose if 

  is a cluster point of (0,1) in ℝ , then for every      there should 

exist a   distinct from   such that          which is not possible 

since        1 when     in ℝ. Hence, the set of all cluster points 

of    1  in ℝ  is empty. 

We shall now introduce the concept of the limit of a function 

in metric spaces. 

Let         and         be metric spaces and let     . Let 

  be a function whose range is contained in    and whose domain 

contains all      such that           for some     except 

possibly at    . We also assume that   is a cluster point of the 

domain of  . That is, we assume that for every    , there is a point 

  in the domain of    distinct from   such that          . 

Definition.      is said to approach   where      as   approaches 

 , if given     there exists a     such that              when 

           . We denote this by lim          or        as 

   . 

The following theorem gives the algebraic properties of the 

limits of real valued functions on metric spaces. 

Theorem 1. Let       be a metric space and let   be a point in  . Let 

  and   be real valued functions whose domains are subset of   and 

ranges are in ℝ with the usual absolute value metric. If 

lim          and lim          where     are in ℝ  then we 

have, 

(i) lim                  . 
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(ii) lim                  . 

(iii) lim        .         . 

(iv) lim    
    

    
  

 

 
. 

Proof. Proof follows exactly on the same lines as the proof in 

Theorem 4 of unit 7, when we replace the absolute value function in 

the domain by the respective metric  . So we omit the details of the 

proof. 

2.4 CONTINUOUS FUNCTIONS ON METRIC 

SPACES 
As in the case of the generalization of the limits of sequences 

and functions in metric spaces, we shall define continuous functions 

in a metric space       by replacing the absolute value value in the 

definition of continuity in ℝ by the metric and creating the 

analogues for an interval in ℝ with the help of the metric.  

A real valued function defined on ℝ is said to be continuous at 

    if                . Since the function is defined at      

this definition is equivalent to the following     formulation. 

The real valued function   is continuous at   ℝ if and only if 

given      there exists a     such that               

whereever        . 

Definition. Let       be a metric space. If     and    , then an 

open sphere of radius   about   denoted by        is defined to be 

the set of all points in   whose distance to   is less than  .  That is 

                     . Since                 is non-

empty. 

Example 1. The open sphere        on the real line is the bounded 

open interval           with mid point   and total length 2  and 

    1  is the bounded open interval   1 1 . 

Example 2. In Euclidean 3-space,     1  is the set of all points 

       such that          1 which has motivated the above 

terminology since          1 is the inside of the sphere. 

Example 3. Let   ℝ , the real line with the discrete metric. Let   

be any point in ℝ . For     1  we have          because the 

only point in ℝ  whose distance from   is less than 1 is   itself. But 

       ℝ  for   1. 

Since the open spheres in metric spaces are analogues of 

open intervals on the real line, we shall give below the definition of 
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convergent sequence and continuous function using the open spheres.    

Definition. A sequence      converges to   if and only if given      

there exists a      such that           for all     . 

Theorem 2. Let    and    be metric spaces with metrics    and    

and let   be  a mapping of    into   . Then   is continuous at      

if and only if any one and hence all of the following three conditions 

hold. 

(i) Given    , there exists a     such that                 

whenever          . 

(ii) The inverse image of   of any open sphere           about 

     contains an open sphere        about  . 

(iii) Whenever      is a sequence of points in    converging 

to    then the sequence         of points in    converges to     . 

Proof.  (i) is the reformulation of the definition of continuous function 

using the metric    and    in    and    in the place of absolute value 

function. 

(ii) Let us assume that   is continuous. Then given      there 

exists a     such that                 whenever          . 

From this we get                which shows that   

              . Since we consider only the values of   which lie in 

        we get              

                      .                      1  

Hence if   is continuous, the inverse image of any open sphere 

          about      contains an open sphere        about  . 

Conversely if                      then we have 

                   . This implies that whenever          , 

              . That is                 whenever          . 

(iii) Let   be a continuous at   and prove that if      as 

     then            as    . Note that       will be defined 

for large values of  . To prove the assertion, we have to show that 

given      there exists positive integer    such that      

          for all     . Since   is continuous at    given      there 

exists a     such that                whenever          .  

Hence,                    .      . 2  

Since      as    , there exists positive integer    such 

that          for all     .   .    

 

Metric Spaces 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

Form (2) and (3), we see that  

                for all     . Hence,            as 

   . 

Conversely,      implies             as     and 

prove that   is continuous at    . Assume the contrary. Then by 

(ii), the inverse image under   of             contains no open 

sphere about  . In particular        does not contain     
 

 
  for 

any positive integer  . Hence, for each positive integer, there is a 

point        
 

 
  such that                . Hence          

 

 
 

but                 . This contradicts the fact that            

as    . This contradiction proves the result. 

Note 1. (i) can also be put in the following equivalent form. For each 

open sphere            centred at     , there exists an open sphere 

       centred at   such that                    .      

Note 2. To verify that a given function  between metric spaces is 

continuous, the sequential characterization of continuous functions 

given in (iii) is more useful. We shall apply (iii) to prove that the 

properties of continuous functions also. 

Note 3. All the above discussion in relation to convergence of 

sequence and continuous functions given for metric spaces can be 

easily modified for real valued functions defined on metric spaces. 

Theorem 3. Let         and         be metric spaces and let 

 :         :     . If   is continuous at      and   is 

continuous at         , then     is continuous at  . 

Proof. Let      be a sequence in    such that      as    . To 

prove the theorem, we have to show that lim            

       . Since   is continuous at    we have lim             .  

Let          and         as     in        . Since   is 

continuous lim                . substituting for     we get  

lim                    .    Hence            is 

continuous .  

To prove the result in ℝ   we can make use of any one of the three 

equivalent metrics in ℝ  given in Example. Without loss of 

generality, let us take the second metric in Exampl. Hence, we have 
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Using the hypothesis (1) and (2) in the above expression, we have 

                    
 

 
 

 

 
   for all    . This shows that 

                as     in ℝ . 

Example 4. Let        . Let               . Let      be defined 

as                 ,  prove that   is continuous on   . 

Let       
    

     and let    tend to             as     in    

metric. We shall show that           as     in   . 

            
          

            
           (1) 

              

    
          

            
        (2) 

Since (1) and (2) are the same,           as     in   . 

                as     in   . 

Hence   is a continuous function. 

CHECK YOUR PROGRESS 
 

1. If   is a metric on  , is    a metric on    
2. Is [0,1] is open ball in M? 
3. Define continuous.  

 

2.5 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Consider        defined on ℝ by             . We know that   

is a metric on ℝ  refer e ample 1 .                      . But 

   is not a metric (refer example 9). 

2. Let      1  with absolute value metric   
 

 
 
 

 
  is   

 

 
 
 

 
  but 

  
 

 
 
 

 
  is    

 

 
   since points in ℝ to the left of   are not in  . 

3. A real valued function defined on ℝ is said to be continuous at   a 

if lim   f    f a . 

2.6  SUMMARY 
1. A set equipped with a reasonable concept of distance is called a 

metric space. 

2.   is called a metric or distance function and        is called the 

distance between   and  . 

3. Let       be a metric space and   be a subset of  .     is 

called a cluster point or a limit point of   if for every    , there exists 

a     distinct from   such that         .  
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4.      is said to approach   where      as   approaches  , if 

given     there exists a     such that              

when            . We denote this by lim          or 

       as    . 

5. A real valued function defined on ℝ is said to be continuous 

at   a if lim   f    f a . 

6. A sequence      converges to   if and only if given      

there exists a      such that           for all     . 

2.7 KEYWORDS 
1. Metric Space: A set equipped with a reasonable concept of 

distance is called a metric space. 

2. Metric or distance function   is called a metric or distance 

function and        is called the distance between   and  . 

3. Usual metric:  A metric space denoted by  ℝ    is defined by 

            . This metric   is called the usual metric 

for ℝ. 

4. Discrete metric: Any non-empty set   we define   as 

        
        
1       .

  Then   is a metric on  .  This is called 

the discrete metric on  . 

5. n-dimensional Euclidean space: ℝ  with usual metric is called 

the n-dimensional Euclidean space. 

2.8 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Let       is a metric space. Define          min        1 . 

Prove that        is a bounded metric space. 

2. Prove that in a metric space any subset of a bounded set is 

bounded. 

3. In ℝ  with usual metric find   1 1 . 

4. In ℝ , with usual metric find         
 

 
 . 

5. Determine   
 

 
 
 

 
   1  is open in ℝ with usual metric. 

6. Find the diameter of the following subset of ℝ with usual metric. 

i.  1         . 

ii.  . 

iii.  . 

iv.            . 

7. Determine which of the following subsets of ℝ are open in ℝ with 

usual metric. 

a. ℝ 

b.  1 2       . 

c.      . 
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6.  

UNIT-3 CONTINUOUS FUNCTIONS ON 
METRIC SPACES 

Structure 

3.0 Introduction 

3.1 Objectives 

3.2 Function Continuous at a Point on the Real Line  

3.3. Reformulation 

3.4 Bounded Sets in Metric Space 

3.5 Problems  

3.6 Answer to Check Your Progress Questions 

3.7 Summary 

 3.8 Key Words 

3.9 Self Assessment Questions and Exercises 

3.10 Further Readings 

3.0 INTRODUCTION 
Theorems about continuous real-valued functions on a closed 

bounded interval       such as, “If   is continuous on      , then   

takes on a maximum and minimum values,’’ and “If   is continuous on 

     , then   takes on every value between       and     ” are tools in 

the proof of the basic theorems in differential and integral calculus. We 

deduce these theorems as special cases of theorems about continuous 

functions on metric spaces. However, we first review the concept of 

continuity in its most elementary form.  

3.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by continuous functions in a point. 

 Discuss reformulation. 

 Describe bounded sets. 

3.2 FUNCTION CONTINUOUS AT A 

POINT ON THE REAL LINE 
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Let   be a point in ℝ  and suppose   is a real-valued function 

whose domain contains all points of some open interval           

where     including   itself.  

 Definition. We say that the function   is continuous at   ℝ if 

lim            . 

The definition really demands that two conditions be fulfilled in 

order that   be continuous at  . The first condition is that the 

lim        exists; the second is that this limit be equal to     . In 

particular, if      is not defined, then   cannot be continuous at  . For 

example, the function   defined by  

      
    

 
        ℝ       

is not defined at      and hence is not continuous at     even 

through lim    sin    ) exists (and is equal to 1). 

However, the function   defined by  

      
    

 
          , 

      1   

is continuous at     since lim            . 

It is often the case that a function   fails to be continuous at a 

point   because lim        does not exist; more frequently, indeed, 

than it fails because      is not defined or because      is not equal to 

lim       . Consider, for example, the characteristic function   of the 

rational numbers. That is,  

      1    (  ℝ,   rational), 

           (  ℝ,   irrational). 

Then      is defined for any   ℝ but lim        does not 

exist for any  . To see this, assume the contrary that lim          

for some   ℝ. Given   
 

 
 there would exist     such that       

   
 

 
 if          . But in the interval         say, there is 

both a rational number and an irrational. If           is rational we 

would have  1     
 

 
, while if           is irrational we would 

have       
 

 
. A contradiction follows easily. 
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On the other hand , most of the functions that are “easy to write 

down” turn out to be continuous at all points where they are defined. For 

example, we proved that lim     
  2   1 .  This shows that 

function   is defined by  

         2    (  ℝ) 

is continuous at    . For      1  and lim        1 . The next 

example in unit 2 shows that the function   defined by  

                            2   

is continuous at   1.   

Theorem 1. If the real-valued functions   and   are continuous at 

  ℝ  then so are           and   . If         then     is also 

continuous at  . 

Proof. Since   and   are continuous at   we have  

 lim              and lim            . 

Then, by 4.1C, lim                        . In other 

“words,” 

 lim                      

This proves that     is continuous at  . The remainder of the 

theorem is proved similarly. 

A continuous function of a continuous function is continuous. 

More precisely,  

Theorem 2. If   and   are real-valued functions, if   is continuous at    

and if   is continuous at       then     is continuous at  . 

Proof. We must show lim                 or,  

 lim                  .  

That is, given     we must find     such that  

                                  .       (1) 

Let       . Now by hypothesis  

 lim            .  

Hence there exists     such that  
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                          .                            (2)      

But, also by hypothesis, 

 lim            .  

Thus (using   where we usually use  ) there exists   such that  

                                 

                            .                  (3) 

Thus if         then      is within   of   and so we may 

substitute      for   in (2). Hence  

                             . 

Which implies (1), and the proof is complete.  

3.3 REFORMULATION 

We have defined “  is continuous at  ” to mean lim        

    . That is,   is continuous at   if for any     there exists     

such that                            . However (as you were 

asked to observe in the last proof), the inequality                 

obviously holds if    . Thus, we need only write         instead 

of           . Here then, is a reformulation of definition.  

Theorem 3.The real-valued function   is continuous at   ℝ  if and 

only if  given     there exists     such that 

                                                                        

Then,   is continuous at   if for any     there exists     

such that, if the distance from   to   is less than  , then distance from 

     to      is less than  . Show that the definition of continuity is 

based on the metric in ℝ. 

Definition. If   ℝ, and     we define        to be the set of all 

  ℝ whose distance to   is less than  . That is,  

           ℝ         .  

We call        the open ball of radius   about  . 

It is clear that        is just a fancy way of denoting the bounded 

open interval          . However, in an arbitrary metric space there 

is no such thing as an interval. But the object        does have a 

counterpart in any metric space, which is the reason we defined it in 

terms of distance. 
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Thus reads “  is continuous at   if and only if given     there 

exists     such that                if         .” That is, the 

entire open ball        is mapped by   into the open ball           . 

Thus,   is continuous at    if and only if, for any open ball   

about       there is an open ball about   which   maps entirely into  . It 

turns out to be more useful to be more useful to state this definition in 

terms of inverse images. 

Theorem 4.The real-valued function   is continuous at   ℝ if and only 

if the inverse image under   of any open ball           about      

contain an open ball        about  . (That is, given     there exists 

    such that 

                    . 

Our final reformulation of the continuity concept will be in terms 

of sequences, observe first that the sequence        
  converges to   if 

and only if given     there exists     such that              

     . 

That is, given any open ball   about  , all but a finite number of 

the    are in  . 

Theorem 5.The real-valued function   is continuous at   ℝ if and only 

if, whenever        
  is a sequence of real numbers converging to    then 

the sequence           
  converges to     . That is,   is continuous at   

if and only if 

lim          implies        lim                                      (*).            

Proof. Let us first assume that   continuous at   and prove that (*) holds. 

Let        
  is a sequence of real numbers converging to  . [Then       

will be defined for   sufficiently large.] We must show that 

lim              that is, given     there exists     such that 

                                           .             (1) 

But since   is continuous at   ℝ there exists     such that  

                                               .        (2) 

Furthermore, since lim       , there exists     such that  
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                                        .            (3) 

. 

For this N, (1) follows from (2) and (3). 

Conversely, suppose (*) holds. We must prove that   is 

continuous at  . Assume the contrary. Then, for some     the inverse 

image under   of             contains no open ball about a. In 

particular,        does not contain     
 

 
  for any    . Thus, for each 

     there is point        
 

 
  such that        . That is 

         
 

 
 but               . 

This clearly contradicts (*), so   must be continuous at  . 

lim
   

                 

Where        
  is any sequence of real numbers such that  

lim
   

    . 

Since   is continuous at  , imply (1) and the proof is contradict. 

3.4 BOUNDED SETS IN METRIC SPACE 

Definition. Let       be a metric space. We say that a subset   of   is 

bounded if there exists a positive real number   such that          

for all      . 

Definition. Let       be a metric space. Let    . Then the diameter 

of A, denoted by     , is defined by       .  .             . 

Note 1. A non-empty set   is a bounded set iff      is finite. 

Note 2. Let      . Then              . 

3.5 PROBLEMS 

Example 1. Any finite subset   of a metric space       is bounded.  

Proof. Let   be any finite subset of  . 

If     then   is obviously bounded. 
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Let    . Then                is a finite set of real numbers. Let 

  ma                . Clearly          for all      . 

   is bounded. 

Example 2.    1  is a bounded subset of ℝ with usual metric since 

       1 for all        1 . 

More generally any finite interval and any subset of ℝ which is 

contained in a finite interval are bounded subsets of ℝ.   

Example 3.       is a unbounded subset of ℝ. 

Example 4. If  consider ℝ with discrete metric, then       is a bounded 

subset of ℝ, since        1 for all          . 

More generally any subset of a discrete metric space   is bounded 

subsets of  .   

Example 5. In    let     1                1             

     1         . . 

Let                 . 

Then   is a bounded subset of   . 

Proof.            
2          

           .
  

           2 for all        .  

   is a bounded set in   . 

Example 6. Let       be a metric space. Define         
      

        
. 

We know that        is also a metric space.  

Also          1 for all      .  

Hence        is a bounded metric space. 
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Example 7. The diameter of any non-empty subset in a discrete metric 

space is 1. 

CHECK YOUR PROGRESS 

 

1.       

2. Define diameter 

3. Describe length of an interval.  

 

 

3.6 ANSWER TO CHECK YOUR PROGRESS 

QUESTIONS 

1. In any metric space,        . 

2. Let       be a metric space. Let    . Then the diameter of A, 

denoted by     , is defined by       .  .             . 

3. In ℝ the diameter of any interval is equal to the length of the interval. 

For example the diameter of    1  is 1. 

 

3.7  SUMMARY 

1. The function   is continuous at   ℝ if lim            . 

2. If the real-valued functions   and   are continuous at   ℝ  then 

so are           and   . If         then     is also continuous at 

 . 

3. If   and   are real-valued functions, if   is continuous at    and if 

  is continuous at       then     is continuous at  . 

4. If   ℝ, and     we define        to be the set of all   ℝ 

whose distance to   is less than  . That is, 

          ℝ         . We call        the open ball of radius   

about  . 
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5. Let       be a metric space. Let    . Then the diameter of A, 

denoted by     , is defined by       .  .             . 

6. A non-empty set   is a bounded set iff      is finite. 

3.8 KEYWORDS 

1. Continuous: The function   is continuous at   ℝ if 

lim            . 

2. Open ball: If   ℝ, and     we define        to be the 

set of all   ℝ whose distance to   is less than  . That is, 

          ℝ         . We call        the open ball 

of radius   about  . 

3. Bounded: Let       be a metric space. We say that a subset 

  of   is bounded if there exists a positive real number   

such that          for all      . 

4. Diameter: Let       be a metric space. Let    . Then 

the diameter of A, denoted by     , is defined by      

 .  .             . 

5. Usual metric:  A metric space denoted by  ℝ    is defined 

by             . This metric   is called the usual 

metric for ℝ. 

6. Discrete metric: Any non-empty set   we define   as 

        
        
1       .

  Then   is a metric on  .  This is 

called the discrete metric on  . 

7. n-dimensional Euclidean space: ℝ  with usual metric is 

called the n-dimensional Euclidean space. 

3.9 SELF ASSESSMENT QUESTIONS AND 

EXERCISES 

1. Let       is a metric space. Define          

min        1 . Prove that        is a bounded metric space. 

2. Prove that in a metric space any subset of a bounded set is 

bounded. 

3. In ℝ  with usual metric find   1 1 . 

4. In ℝ , with usual metric find         
 

 
 . 
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8. Determine   
 

 
 
 

 
   1  is open in ℝ with usual metric. 
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UNIT-4 SUBSPACES 
Structure 

4.0 Introduction 

4.1 Objectives 

4.2 Subspace 

4.3. Interior of Set 

4.4 Open Sets 

4.5 Closed Sets 

4.6 Closure 

4.7 Limit Point 

4.8 Dense Sets 

4.9 Answer to Check Your Progress Questions 

4.10 Summary 

4.11 Key Words 

4.12 Self Assessment Questions and Exercises 

4.13 Further Readings 

4.0 INTRODUCTION 
In mathematics, a metric space aimed at is subspace is a categorical 

construction that has a direct geometric meaning. It is also a useful 

step toward the construction of the metric envelops, or tight span, 

which are basic objects of the category of metric spaces. 

4.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by subspaces. 

 Determine if subsets of a metric space are open, closed sets. 

 Discuss limit point, closure and dense set. 

4.2 SUBSPACE 
Definition. Let        be a metric space. Let    be a non-empty 

subset of  . Then    is also a metric space with the same metric d. 

we say that        is a subspace of      . 
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Note. If    is a subspace of   a set which is open in    need not be 

open in  . 

For example, if   ℝ with usual metric and       1  then 

   
 

 
  is open in    but not open in  .  

We now proceed to investigate the nature of open sets in 

subspace    of a metric space  . 

Theorem 1. Let   be a metric space and    a subspace of  . Let 

     . Then    is open in    iff there exists an open set   in   such 

that        . 

Proof. Let    be a subspace of  . Let     . 

We denote         the open ball in    with center  , radius  . 

Then                        . 

Also,                      . 

Hence,                  .                       .. 1  

Now, let    be an open set in   . 

                  
                  

                           
                                                      (by 

(1)) 

                       
    .  

             where                 
 which is open  .  

Conversely, let         where   is open in  .  

We claim that    is open in   . 

Let     . 

      and     . 

Since   is open in M there exists a positive real number   such 

that         . 

                .  
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i.e.                        (using (1)) 

     is open in    . 

Example 1.  Let    ℝ and       1 . Let       
 

 
 . 

Now       
 

 
   

 

 
  

 

 
     1  and  

 

 
  

 

 
  is open in ℝ. 

     
 

 
  is open in [0,1]. 

SOLVED PROBLEMS 
Problem 1. Let    be a subspace of a metric space  . Prove that 

every open set    of   is open in   iff is open in  .  

Solution. Suppose that every open set    of    is open in  .  

Now,    is open in   . 

Hence    is open in  .  

Conversely, suppose    is open in  . 

Let    be an open set in   . 

Then by theorem 1,  there exists an open set   in   such that 

       . 

Since   and    are open in   we get    is open in  . 

4.3 INTERIOR OF A SET 
Definition. Let       be a metric space. Let    . Let    . Then   

is said to be an interior of   if there exists a positive real number   

such that         . 

The set of all interior points of   is called the interior of   

and it is denoted by      . 

Note.        . 

Example 1. Consider  ℝ  with usual metric. 
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(a) Let      1 .  Clearly   and 1 are not interior points of   and 

any point      1  is an interior point of  . Hence            1 . 

(b) Let    . Let    Then for any positive real number  , 

                 contains irrational numbers. 

        is not a subset of  . 

   is not an interior point of   

Since     is arbitrary, no  point of   is an interior point of  . 

         

(c) Let   be a finite subset ℝ. Then        . 

(d) Let      1 
 

 
    

 

 
  . .  . Then         . 

Example 2. Consider ℝ with discrete metric.  

Let      1 . Let      1 . 

Then     
 

 
                   

    is an interior point of  . 

Since      1  is arbitrary        . 

Basic properties of interior are given in the following theorem. 

Theorem 2. Let       be a metric space. Let      . 

(i) A is open iff A=Int A. In particular         and     M  M. 

(ii)     A   Union of all open sets contained in A. 

(iii)       is an open subset of A and if B is any other open 

set contained in  A then         .i.e. Int A is the largest open set 

contained in A. 

(iv)                .  

(v)      A  B  Int A  Int B. 

(vi)      A  B  Int A Int B. 

Proof. 

(i)  Follows from the definitions of open set. 

(ii) Let                                .  
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To prove that        . 

Let        .  

  There exists a positive real number r such that 

        . 

Thus        is an open set contained in A. 

         .  

    .  

                  .       1  

Now, let    . 

Then there exists an open set B such that     and    . 

Now, since B is open and     there exists a positive real 

number r such that           . 

    is an interior point of A. 

Hence        .      . 2  

From (1) and (2), we get        . 

(iii) Since union of any collection of open sets is open 

(ii)       is an open set. 

Trivially        . 

Now, let B be any open set contained in A. 

Then B G=Int A.    (by 2) 

        is the largest open set contained in A. 

(iv) Let        . 

  There exists a real number r>0 such that B(x,r) A. 

But    . Hence         . 

        . Hence Int A   Int B. 

(v)      . 

                .   (by (iv)) 

Similarly                . 

                      .           . 1  

Now,               . 

Hence                 . 

Thus             is an open set contained in    . 

But            is the largest open set contained in    . 
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From (1) and (2) we get                       . 

(vi)      . 

                     (by (iv)) 

Similarly,              

                       . 

Note.            need not be equal to            . 

For example, in ℝ  with usual metric consider      2  and 

   2   . 

But,                2   2           2 . 

                     .  

4.4 OPEN SET 
Definitions. Let       be a metric space. Let   be a subet of  . Then 
  is said to be open in   if for every     there exists a positive real 
number   such that         . 

Example 1. In ℝ with usual metric    1  is an open set. 

Proof. Let      1 . 

Choose   min     1     min   1    . 

Clearly     and                      1 . 

     1  is open. 

Example 2. In ℝwith usual metric    1  is not open since no open ball 

with center 0 is contained    1 . 

Example 3. Consider      2  with usual metric. Let      1   . 

Then   is open in  . 

Proof. Let      1 . 

If     then     
 

 
      

 

 
   . 

If     choose   min   1    . 

Clearly     and                      1 .     

    is open in  . 

Example 4. Any open interval       is an open set in ℝ with usual 

metric.  

Proof.  Let        . 
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Let   min         . 

Then             . Hence       is an open set.  

Note. Similarly we can prove that        and       are open sets. 

Example 5. In ℝ with usual metric any finite non-empty subset   of ℝ 

is not an open set. 

Proof. Any open ball in ℝ is a bounded open interval which is an 

infinite subset of ℝ. Hence it cannot be contained in the finite subset 

 . Hence   is not open in ℝ. 

Example 6.   is not open in ℝ.  

Proof. Let    . Then for any     the interval           

contains both rational and irrational numbers. 

            is not a subset of  .  

    is not open in ℝ. 

Example 7.   is not open in ℝ. 

Proof. Let    . Then for any     the interval           is not a 

subset of  . Hence   is not open in ℝ. 

Theorem 3. In any metric space  .  

(i)   is open. 

(ii)   is open. 

Proof.  (i) Trivially   is an open set. 

              (ii)Let    . Clearly for any              . Hence   is 

an open set. 

Theorem 4. In any metric space       each open ball is an open set. 

Proof. Let        be an open ball in  .  

Let         . 

Then         . 
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            .  

Let            . 

We claim that               . 

Let           

                    .  

                   (1) 
Now,                                   (by (1)). 

          .  

           

Hence               . 

         is an open set. 

Theorem 5. In any metric space the union of any family of open sets 

is open. 

Proof. Let       be a metric space. 

Let          be a family of open sets in  . 

Let          

If     then   is open. 

Therefore, let    . Let     . 

Then      for some    . 

Since    is open there exist an open ball        such that 

         . 

          .  

Hence   is open. 

Theorem 6. In any metric space the intersection of a finite number of 

open sets is open.  

Proof. Let       be a metric space. 

Let              .  be open sets in  . 

Let                   .   

 

Subspaces 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

If    . Let    . 

        for each   1 2    . 

Since each    is an open set there is a positive real number    

such that 

          .                           (1) 

Let   min            . 

Obviously   is a positive real number and                for 

all   1 2    . 

Hence           for all   1 2    .     (by 1) 

            .
 
     

          . 

    is open. 

Note. The intersection of an infinite number of open sets in a metric 

space need not be open. 

For example, consider ℝ with usual metric. 

Let      
 

 
 
 

 
 . 

Then    is open in ℝ for all  .   (refer example 4) 

But         
    which is not open in ℝ.                (refer 

example 5) 

We now give a characterization of open sets in terms of open 

balls. 

Theorem 7. Let       be a metric space. Let   be any non-empty 

subset of  . Then   is open iff   can be expressed as the union of a 

family of open balls. 

Proof. Let   be a non-empty open subset of  . 

Let    . 

Since   is an open set there exists an open ball         such 

that          . 

Clearly              . 

Thus   is the union of a family of open balls. 
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Conversely, let   be a union of open balls. 

Then A is open. 

SOLVED PROBLEMS 
Example 1. Let       be a metric space. Let     be two distinct points 

of  . Prove that there exist disjoint open balls with centers   and   

respectively. 

Solution. Since    ,           . 

Consider the open balls     
 

 
   and     

 

 
  . 

We claim that     
 

 
       

 

 
     

Suppose     
 

 
       

 

 
     

Let        
 

 
       

 

 
  . 

        
 

 
   and       

 

 
  . 

         
 

 
  and        

 

 
 . 

Now,                     . 

    
 

 
  

 

 
  

 

 
   

Which is a contradiction. 

Hence     
 

 
       

 

 
    . 

Example 2. Let       be a metric space. Let    . Show that      is 

open. 

Solution. Let        . Then    . 

            .  

Cleary     
 

 
       . 

        is open. 

Example 3. Let       be a metric space. Show that every subset of   

is open iff     is open for all    . 

Solution. Suppose every subset of   is open. 

Then obviously     be open for all    . 
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Conversely, let     be open for all    . 

Let   be any subset of  . 

If     then A is open.  

Let    . Then       .    

By hypothesis     is open.  

Hence  , is open. 

Example 4.  Let                         
  

    
 

   1 . Prove 

that   is an open subset of   . 

Solution. We first prove that       1  where           .   

Let    . Hence     
  

      1. 

                   
    

 
       

  
    

 
   1  

Thus        1 

        1   

        1                 (1) 

Now, let       1  

         1.  

            
    

 
   1  

          
    

 
   1  

     .  

      1   .         (2) 

By (1) and (2) we get       1   

Now, the open ball     1  is an open set.         

    is an open set. 

Example 5. Prove that any open subset of R can be expressed as the 

union of a countable number of mutually disjoint open intervals. 

Solution. Let A be an open subset of R. let    . Then there exists a 

positive real number r such that                   . 
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Thus there exist an open interval I such that     and     

Let    be denote the largest open interval such that      and 

     

Clearly         . 

Now let      . 

We claim that       or         

Suppose         

Then       is an open interval contained in  . 

But    is the largest open interval such that      and     . 

           so that       

Similarly      . 

        . Thus the intervals    are mutually disjoint. 

We claim that the set            is countable. 

Now for each      choose a rational number      . 

Since the intervals    are mutually disjoint            . 

        defined by          is 1-1. 

    is equivalent to a subset of   which is countable. 

    is countable. 

Definition. Let   and   be the two metrics on  . Then the metrics   

and   are said to be equivalent if the open sets of       are the open 

sets of       and conversely. 

Example 6. Let       be a metric space. Define        2      . 

Then   and   are equivalent metrics.                                                                                                                                                                                    

Solutions. We know that   is a metric on M.   

We first prove that              2   

Let           

          .  

  2       2 .  
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         2 . Hence        2   

               2         . 1  

Now, let        2   

         2 .  

  
 

 
        .  

          . Hence          . 

      2                 .. 2  

  By (1) and (2) we get              2  .       ..     

Now, let   be any open subset in      . Let    . Hence there 

exists     such that          . 

        2    .  

    is open in       .  

Conversely, suppose   is open in      . 

Let    . Hence there exists r>0 such that          . 

Hence      
 

 
     (using 3). Hence   is open in      . 

    and   are equivalent metrics. 

Example 7. Let       be a metric space. Define       
      

        
 . 

Prove that   and   are equivalent metrics on  . 

Solution. We know that ρ is a metric on  .We first prove 

             
 

   
  provided     1. 

Let          . Hence         . 

  
      

        
  .  

           1         . 

         1      . 

         
 

     
                       (since     1) 
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 .  

               
 

   
 .    .  1  

Now, let        
 

   
 . Hence        

 

   
. 

         1        

           1         .  

  
      

        
  .  

          .  

           . 

       
 

   
              

 .  .  2  

   By (1) and (2) we get       
 

   
         . 

  . .     

Now, let   be open in      . 

Let     . Hence there exists     such that          .

   

Without loss of generality we may assume that   1. 

        
 

   
                (By (3)). 

     is open in      . 

Conversely, let   be open in      . 

   There exists     such that          . 

       
 

   
          (using 3). 

    is open in      . 

Hence   and   are equivalent metrics. 

Example 8. If   and ρ are metrics on   and if there exists   1 such 

that 
 

 
                      for all      . Prove that   and ρ 

are equivalent metrics. 

 

Subspaces 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 



  

Solution. Suppose there exists   1 such that for all       

 
 

 
                          . 1  

Let   be an open set in      . 

Let    . Hence there exists     such that          . 

We now claim that      
 

 
   .    .. 2  

Let        
 

 
 . 

          
 

 
.  

            .  

           .    (using 1) 

                   (by 2)  

     . Hence       
 

 
   . 

    is open in       

Conversely, let   be open in      . Let    . 

   There exists     such that          .  

  .    

We claim that      
 

 
   . 

         
 

 
 .  

          
 

 
.  

            .  

           .    (using 1) 

                   (by 3)  

     . Hence       
 

 
   .  

Hence G is open in      . 

     and   are equivalent metrics. 
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4.5 CLOSED SETS 
Definition. Let       be a metric space. Let    . Then   is said to 

be closed in   if the complement of   is open in  . 

Example 1. In ℝ with usual metric any closed interval       is closed 

set.  

Proof.       is not open in ℝ since   is not an interior point of      . 

Now,        ℝ                    . 

Also        and       are open in ℝ. 

i.e.        is open in ℝ. 

       is closed in ℝ. 

Example 2. In ℝ with usual metric       is neither closed nor open. 

Proof.       is not open in ℝ since   is not an interior point of      . 

Now,        ℝ                     and this set is not open 

since   is not an interior point. 

       is not closed in ℝ. 

Hence       is neither open not closed in ℝ. 

Example 3. In ℝ with usual metric       is neither closed nor open.  

Proof is similar to example 2.  

Example 4.   is closed. 

Proof.          1 . 
     

The open interval      1  is open and union of open sets is open. 

    is open. Hence   is closed. 

Example 5.   is not closed in ℝ. 

Proof.     the set of irrationals which is not open in ℝ. 

Therefore,   is not closed in ℝ. 

Example 6. The set of irrational numbers is not closed in ℝ. 

Proof is similar to that of example 5. 

Example 7. In ℝ with usual metric every singleton set is closed. 
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Proof. Let   ℝ. 

   Then      ℝ                  . 

Since         and       are both open sets               is 

open. 

      is open ℝ. Hence     is closed in ℝ. 

Definition. Let       be a metric space. Let    . Let   be any 

positive real number. Then the closed ball or the closed sphere with 

center   and radius  , denoted by        , is defined by  

                      . 

When the metric   under consideration is clear we write        

instead of        . 

Example 1. In ℝ with usual metric                 .  

Example 2. In  ℝ  with usual metric let           ℝ . 

Then               ℝ                  . 

        ℝ        
         

     . 

Hence        is the set of all points which lie within and on the 

circumference of the circle with center   and radius  . 

Theorem 8.  In any metric space every closed ball is a closed set. 

Proof. Let       be a metric space. 

Let        be a closed ball in  . 

Case (i). Suppose          . 

           is open and hence        is closed. 

Case (ii). Suppose          . 

Let          .  

          .    

         .  

           .  

Let            . 

We claim that                . 
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Let          .  

Then                   . 

                . 

Now,                     . 

                     . 

                    (by 1). 

  . 

Thus          . 

         . 

Hence          . 

                . 

         is open in  . 

        is closed in  . 

Theorem 9. In any metric space    (i)    is closed, (ii)   is closed. 

Proof. Since      is open.   is open. 

Similarly,       is open and hence is   is closed. 

Note. We note that in any metric space     and   are both open and 

closed. 

Theorem 10. In any metric space arbitrary intersection of closed sets 

is closed. 

Proof. Let       be a metric space. 

Let          be a collection of closed sets. 

We claim that        is closed. 

We have           =   
 .     by De Morgan’s law  

Since    is closed   
  is open. 

Hence    
 

    is open.      (By theorem 3)   

           is open. 
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        is closed. 

Theorem 11. In any metric space the union of a finite number of 

closed set is closed. 

Proof. Let       be a metric space. 

Let        .     be closed sets in  . 

By De-Morgan’s law         .        
    

      
 .

       (by theorem 4) 

Since each    is closed   
  is open. 

Hence   
    

      
  is open. 

         .      is open. 

Hence        .    is closed. 

Note. The union of an infinite collection of closed sets need not be 

closed. For e ample  consider ℝ with usual metric. 

Let     
 

 
 1  where   1 2  . 

Then    
 
      

 

 
 1  

     1   
 

 
 1   

 

 
 1     

    1  which is not closed in ℝ. 

    
 
    is not closed. 

Theorem 12. Let   be a metric space and    be a subspace of  . Let 

     . Then    is closed in    iff there exists a set   which is closed 

in   such that        . 

Proof. Let   be closed in   . 

       is closed in   . 

           , where   is open in  . (by theorem 6) 

Now,              . 

           . 

Also, since   is open in       is closed in  . 

         where      is closed in M. 

Proof of the converse is similar. 
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4.6 CLOSURE 
Let       be a metric space. Let    . Consider the collection of all 

closed sets which contain  . This collection is non empty since at 

least   is a member of this collection. 

Definition. Let   be a subset of metric space      . The closure of  , 

denoted by    is defined to be the intersection of all closed sets which 

contain  . 

Thus                                 . 

Note. Since intersection of any collection of closed set     . Also if   

is any closed set containing   then     . Thus    is the smallest 

closed set containing  . 

Theorem 13.   is closed iff     . 

Proof. Suppose     . 

Since    is closed   is closed. 

Conversely, suppose   is closed. Then the smallest closed set 

containing   is   itself. 

     . 

Note. In particular (i)        (ii) M  M     (iii)     . 

Example 1. Consider ℝ with usual metric. 

(a) Let      1 . We know that   is a closed set.  

         1 . 

(b) Let      1 . Then    1  is a closed set containing    1 . 

Obviously    1  is the smallest closed set containing    1 . 

       1 . 

Example 2. In a discrete metric space       any subset   of   is 

closed. Hence     . 

Theorem 14.  Let       be a metric space. Let      . 

Then  (i)          .  

         (ii)                   .  

         (iii)                   . 

Proof. (i) Let    .  
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                Now,       . 

                     is a closed set containing  . 

                  But    is the smallest closed set containing  . 

      . 

(ii)we have      . 

              .   (by (i)). 

 

Similarly,              . 

                 .  

Now    is a closed set containing   and    is a closed set containing  . 

       is a closed set containing    . 

But            is the smallest closed set containing    . 

                  

From (1) and (2) we get                   

(iii) We have      .  

 

            .     (by (i)). 

 

Similar,             .  

                 . 

Note.            need not be equal to      . 

For e ample in ℝ with usual metric  take      1  and   1 2  . 

Then      . 

                . 

But ,          1   1 2   1 .  

                 . 

Note.  In a metric space       if        .     are subset of   then 

       .   .
                          

      
    .   

   . This is an extension of result (ii) 

of theorem 2.14. 
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4.7 LIMIT POINT 
In this section we introduce the concept of limit point of a set. This 

concept can be used to characterize closed sets and describe the 

closure of a set. 

Definition. Let       be a metric space. Let    . Let    . Then   

is called a limit point or a cluster point or an accumulation point of   if 

every open ball with center   contains at least one point of   different 

from  .  

(i.e.)                   for all    . 

The set of all limit points of   is called the derived set of   and is 

denoted by     . 

Note.   is not a limit point of   iff there exists an open ball        

such that                 . 

Example 1. Consider ℝ with usual metric. 

(a) Let      1 . 

Any open ball with center   is of the form        which contains a 

point of    1  other that  . 

Hence   is a limit point of    1 . 

Similarly 1 is a limit point of    1 . 

2 is not a limit point of  , since 

 2  
1

2
 2  

1

2
     1   

 

2
 
 

2
     1   . 

In this case all points of    1  are limit points of    1  and no other 

points is a limit point. 

Hence     1     1 . 

(b) Let    1 
 

 
 
 

 
  .  

 

 
  .  . Here 0 is a limit point of  . 

For, consider any open ball        with center 0. 

Choose a positive integer   such that 
 

 
  . 

Then 
 

 
       . 

        contains a point of   which is different from 0. 
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   is a limit point of  . 

1 is not a limit point of   since 

 1  
1

 
 1  

1

 
      1    

 

 
 
 

 
   

1

2
 
1

 
  .  

1

 
  .    . 

In fact any point except zero is not a limit point of   (verify). 

         . 

(c) Consider  . Any real number   is a limit point of  , since any 

interval           contains infinite number of rational 

numbers. 

      ℝ. 

Example 2.In ℝ  ℝ with usual metric,        ℝ  ℝ. 

The proof is similar to example (d) of 1. 

Example 3. Let       be a discrete metric space. 

Let    . Let    . 

Then     
 

 
                       . 

   is not a limit point of  . 

Since     is arbitrary   has no limit point. 

       . 

Thus any subset of a discrete metric space has no limit point. 

Example 4. Consider   with usual metric. 

Let          1 . 

Then              1 . 

Theorem 15. Let       be a metric space. Let    . Then   is a limit  

point of   iff each open ball with center   contains an infinite number  

of points of  . 

Proof. Let   be a limit point of  . 

Suppose an open ball        contains only a finite number of points 

of  . 

Let                         .     . 
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Let    min           1 2     . 

Since     ,           for all   1 2     and hence     . 

Also                  . 

   is not a limit point of   which is a contradiction. 

Hence every open ball with center   contains infinite number of 

points of  . 

The converse is obvious. 

Corollary. Any finite subset of a metric space has no limit point. 

Proof. Let   be a finite subset of  . 

Suppose   has limit point say  . Then        contains infinite 

number of points of  . This is a contradiction since   is finite. 

Theorem 16. Let   be a metric space and    . Then          . 

Proof. Let         . We shall prove that     . 

Suppose     . 

        and since    is closed      is open. 

  There exists an open ball            . 

            . 

           .    (since     ) 

          which is a contradiction. 

     . 

          .            .. 1  

Now let     . To prove         . 

If     clearly         . 

Suppose    . We claim that       . 

Suppose       . Then there exists an open ball        such that 

          . 

           and         is closed. 

But    is the smallest closed set containing  . 

           . 
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But      and            which is a contradiction. 

Hence       . 

         . 

          .      . 2  

From (1) and (2) we get          . 

Corollary 1.   is closed iff   contains all its limit points. 

i.e.   is closed iff       . 

Proof. A is closed       . 

          

       . 

Corollary 2.                  for all    . 

Proof. Let       then         . 

     or       . 

If     then           . 

If        then            for all    . 

Hence in both cases            for all    . 

Conversely, suppose            for all    . 

We have to prove that    .  

If     trivially     .  

Let    . Then        . 

                 .  

       .  

    .   

Corollary 3.            for every open set   containing  . 

Proof. Let     . 

Let   be an open set containing  . Then there exists     such that 

         . 
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Also, since     ,           . 

      . 

Conversely, suppose       suppose       for every open 

set    

containing  .  

Since        is an open set containing  , we have           . 

    .  

Example 1. Consider ℝ with usual metric. 

(a) Let      1 . 

Then          . 

                   1     1 .  

      1 .  

(b) Let     1 
 

 
 
 

 
  .  

 

 
  .    

Then          . 

  1 
1

2
 
1

 
  .  

1

 
  .      . 

(c)          . 

      . 

   is closed. 

(d)          . 

       ℝ  ℝ.  

   is  not closed. 

Example 2. In ℝ  ℝ with usual metric. 

                        . 

        ℝ  ℝ . 

 ℝ  ℝ. 

     is not closed. 

SOLVED PROBLEM 

Problem 1. Prove that for any subset   of a metric space,            

where      is the diameter of  . 

Solution. We have     . 

                  .. 1  
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Now, let     be given. We claim that       d A   . 

Let       . 

     
 

 
       and     

 

 
          (by cor. 2) 

Let        
 

 
     and        

 

 
    . 

        
 

 
   and        

 

 
  . 

         
 

 
  and         

 

 
 .          .. 2  

Also,      and                   .       ..    

Now,                                . 

 
 

 
       

 

 
 .     (by (2) and (3)) 

       .  

Thus              . 

  .  .  .                       .  

Now, since   is arbitrary, we have           .       .    

By (1) and (4), we get           . 

4.8 DENSE SETS 
Definition. A subset   of a metric space   is said to be dense in    

or everywhere dense if     . 

Definition. A metric space   is said to be separable if there exists a 

countable dense subset in  . 

Example 1. Let   be a metric space. Trivially,   is dense in  . 

Hence any countable metric space is separable.  

Example 2. In ℝ with usual metric   is dense in ℝ since    ℝ. 

Further   is countable. 

Hence ℝ is separable. 

Example 3. Let   be a discrete metric space. 

Let     and    . 

Since   is closed,     . 
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   is not dense. 

Hence any uncountable discrete metric space is not separable.  

Example 4. In ℝ  ℝ with usual metric     is a dense set, since 

            ℝ  ℝ. 

Also   is countable and hence     is countable. 

 ℝ  ℝ is separable. 

Theorem 18. Let   be a metric space and    . Then the following 

are equivalent. 

(i)   is dense in  . 

(ii) The only open set disjoint from   is  . 

(iii) The only open set disjoint from   is  . 

(iv)   intersections every non-empty open-set. 

(v)   intersections every  open ball. 

Proof. 

(i) (ii). 

Suppose   is dense in M.  

Then     .  

Now, let     be any closed set containing  . 

Since    is the smallest closed set containing    we have     . 

Hence    .  (by (1)). 

    . 

  The only closed set which contains   is  . 

(ii) (iii). Suppose (iii) is not true. 

Then there exists a non-empty open set   such that      . 

    is a closed set and     . 

Further, since     we have    M which is a contradiction to (ii). 

Hence (ii) (iii). 

Obviously (iii) (iv). 

(iv) (v), since every open ball        intersect  . 
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Then by corollary (2) of theorem 16,     . 

    .   

But trivially     . 

     .  

   is dense in  . 

SOLVED PROBLEM 

Problem 1. Give an example of a set   such that both   and    are 

dense in ℝ. 

Solution. Let    . 

Since any open ball                  contains both irrational   

and   . 

Hence   and    are dense in ℝ. (by theorem 17) 

 

CHECK YOUR PROGRESS 
 

1. Show that  1 2        is open in ℝ. 
2. When did  the set of interior point of A is equal to the set 

A? 
3. Is     is open or not? 
4. Show that the set of irrational numbers is not open in ℝ. 
5. Show that every subset of a discrete metric space is closed. 
6. Show that   has no limit point. 

 

4.9 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let    ℝ and     1 2       .  Let     1 2 . Then  

    1 2   
 

 
 
 

 
    . Therefore,   1 2  is open in   . 

Similarly       is open in   . 

2. In a discrete metric space  ,         for any subset   of  . 

3. In ℝ with usual metric the set     is not an open set since, any 

open ball with center   is not contained in    . 

4. Proof is similar to that of example 7. 

5. Let       be a discrete metric space. Let    . Since every 

subset of a discrete metric space is open    is open.  

Therefore,    is closed. 

6.  Let   is an integer, then     
 

 
     

 

 
   

 

 
  does not 

contain any integer other that  . Hence   is not a limit point of 

 . If   is not an integer, let   be the integer which is closest to 
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 . Choose   such that          . Then                  

contains no integer. Hence   is not a limit point of  . Since   is 

arbitrary   has no limit point. Therefore,       . 

4.10  SUMMARY 
1. Let        be a metric space. Let    be a non-empty 

subset of  . Then    is also a metric space with the same metric d. 

we say that        is a subspace of      . 

2. Let       be a metric space. Let    . Let    . Then 

  is said to be an interior of   if there exists a positive real number   

such that         . 

3. The set of all interior points of   is called the interior of 

  and it is denoted by      . 

4. A is open iff A=Int A. In particular         and 

    M  M. 

5. Let       be a metric space. Let   be a subet of  . Then 

  is said to be open in   if for every     there exists a positive real 

number   such that         . 

6. In any metric space       each open ball is an open set. 

7. In any metric space the union of any family of open sets 

is open. 

8. In any metric space the intersection of a finite number of 

open sets is open. 

9. Prove that any open subset of R can be expressed as the 

union of a countable number of mutually disjoint open intervals. 

10. In any metric space every closed ball is a closed set. 

11. In any metric space    (i)    is open, (ii)   is open. 

12. In any metric space    (i)    is closed, (ii)   is closed. 

13. In any metric space arbitrary intersection of closed sets 

is closed. 

4.11 KEYWORDS 
1. Subspaces: Let        be a metric space. Let    be a non-empty 

subset of  . Then    is also a metric space with the same metric d. 

we say that        is a subspace of      . 

2. Interior: Let       be a metric space. Let    . Let    . 

Then   is said to be an interior of   if there exists a positive real 

number   such that         . 

3.      : The set of all interior points of   is called the interior of 

  and it is denoted by      . 

4. Open: Let       be a metric space. Let   be a subet of  . Then 

  is said to be open in   if for every     there exists a positive real 

number   such that         . 
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5. Equivalent: Let   and   be the two metrics on  . Then the metrics 

  and   are said to be equivalent if the open sets of       are the 

open sets of       and conversely. 

6. Closed: Let       be a metric space. Let    . Then   is said to 

be closed in   if the complement of   is open in  . 

7. Closed ball or closed sphere: Let       be a metric space. Let 

   . Let   be any positive real number. Then the closed ball or 

the closed sphere with center   and radius  , denoted by        , 

is defined by                        . When the metric   

under consideration is clear we write        instead of        . 

8. Closure: Let   be a subset of metric space      . The closure of  , 

denoted by    is defined to be the intersection of all closed sets 

which contain  . 

9. Limit: Let       be a metric space. Let    . Let    . Then   

is called a limit point or a cluster point or an accumulation point 

of   if every open ball with center   contains at least one point of 

  different from  . 

10. Derived set: The set of all limit points of   is called the derived set 

of   and is denoted by     . 

11. Dense: A subset   of a metric space   is said to be dense in    or 

everywhere dense if     .  

4.12 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Given an example of a metric space   and a non-empty proper 

subspace   of M such that every open set in    is also an open 

set in  . 

2. Determine the interior of    which is the subsets of ℝ.  

3. Prove that any finite subset of a metric space is closed. 

4. Given an example to show that in a metric space closure of an 

open ball        need not be equal to the corresponding closed 

ball       . 

5. Prove that the set of all limit points of a subset of a metric space is 

closed. 

6. Prove that any open ball is a non-empty open set. 

7. Prove that ℝ  with usual metric is separable. 

8. With usual metric show that   is dense in ℝ. 

9. Prove that in a discrete metric space every set is both open and 

closed. 

10. Show that a set which is not closed is open.  
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2. Richard R. Goldberg, Methods of Real Analysis, Oxford & IBH 

Publishing Company, New Delhi. 
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BLOCK- II 
CONTINUITY AND POWER SERIES 

 

UNIT-5 COMPLETE METRIC SPACES 
Structure 

5.0 Introduction 

5.1 Objectives 

5.2 Completeness  

 . . Baire’s Category theorem 

5.4 Answer to Check Your Progress Questions 

5.5 Summary 

5.6 Key Words 

5.7 Self Assessment Questions and Exercises 

             5.8 Further Readings 

5.0 INTRODUCTION 
The reader is familiar with the concept of convergent 

sequences and Cauchy sequences in ℝ. In this chapter we generalize 

these concept to sequence in any metric space. 

5.1 OBJECTIVE 
After going through this unit, you will be able to: 

 Understand what is meant by complete. 

 Determine converges of a sequence and Cauchy sequence. 

 Discuss Baire’s Category theorem. 

5.2 COMPLETENESS 
Definition. Let       be a metric space. Let                    be 

a sequence of point in  . Let    . We say      is converges to   if 

given     there exists a positive integer    such that           

such that for all     . Also   is called a limit of     . 

If      converges to   we write lim        or       . 

Note 1.        iff for each open ball        with center   there 

exists a positive integer    such that           for all     . 
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Thus the open ball        contains all but a finite number of terms of 

the sequence. 

Note 2.        iff the sequence of real numbers            . 

Theorem 1. For a convergence sequence      the limit is unique. 

Proof. Suppose        and       . 

Let     be given. Then there exist positive integers   and    

such that         
 

 
  for all      and         

 

 
  for all     . 

Let   be a positive integer such that        . 

Then                       . 

  
 

 
  

 

 
   .  

          .  

Since     is arbitrary         . 

          .  

     .  

Note. In view of the above theorem if        then   is called the 

limit of the sequence     . 

The connection between the limit of a sequence and limit of a 

sequence and limit point of a set is given in the following theorem. 

Theorem 2. Let   be a metric space and    . Then  

(i)      iff there exists a sequence      of distinct points of   such 

that       . 

(ii)   is a limit point of   iff there exists a sequence      of distinct 

points in   such that       . 

Proof. Let     . 

Then         .      (by theorem 16 in unit 4)      

       and        

If    , then the constant sequence       is a sequence in   

converging to  . 

 

Complete Metric Spaces 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 



  

If        then the open ball     
 

 
  contains infinite number of 

points of  .   (by theorem 15 of unit 4) 

  We can choose        
 

 
    such that           .       

for each  . 

       be a sequence of distinct points in . 

Also         
 

 
 for all  . 

 lim            .  

        .  

Conversely, suppose there exists a sequence      in   such that 

      . 

Then for any     there exists a positive integer    such that 

          for all     . 

            .  

        .   (by corollary 2 of theorem 16 in unit 4) 

Further if      is a sequence of distinct points,          is 

infinite. 

         .  

     is a limit point of  . 

Definition. Let       be a metric space. Let      be a sequence of points 

in M.      is said to be a Cauchy sequence in   if given     there exists 

a positive integer    such that            for all       . 

Theorem 3. Let       be a metric space. Then any convergence 

sequence in   is a Cauchy sequence. 

Proof. Let      be a convergent sequence in   converging to    . 

Let     be given.  

Then there exists a positive integer    such that         
 

 
  

for all     . 

                         .  

  
 

 
  

 

 
   .   for all       . 
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Thus              for all       . 

       is a Cauchy sequence. 

Note. The converse of the above theorem is not true. 

For example, consider the metric space    1  with usual 

metric. 

  
 

 
  is a Cauchy sequence in (0,1]. 

But this sequence does not converge to any point. 

Definition. A metric space   is said to be complete if every Cauchy 

sequence in   converges to a point in  . 

Example1. ℝ with usual metric is complete. This is a fundamental 

fact of elementary analysis and a proof of this fact is given is unit 13 

Note. The metric space    1  with usual metric is not complete (refer 

note given above) 

Example 2.   with usual metric is complete. 

Proof. Let      be a Cauchy sequence in  . 

Let           where       ℝ. 

We claim that      and      are Cauchy sequence in ℝ. 

Let     be given. 

Since      is a Cauchy sequence, there exists a positive 

integer    such that           for all       . 

Now,                 and                . 

Hence           for all         and           for 

all       . 

       and      are Cauchy sequence in ℝ. 

Since ℝ is complete  there e ists     ℝ such that        

and       .  

Let       . We claim that       .  

We have                          
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Now, let     be given. 

Since        and        there exist positive integer    

and    such that        
 

 
  for all      and        

 

 
  for all 

    . 

Let    ma        . 

From (1) we get        
 

 
  + 

  

 
    for all     . 

        . 

    is complete. 

Example 3. Any discrete metric space is complete. 

Proof. Let       be a discrete metric space. 

Let      be a Cauchy sequence in  . 

Then there exists a positive integer    such that          
 

 
 

for all       . 

Since   is the discrete metric distance between any two points 

is either 0 or 1. 

             for all       . 

        
   (say)     . 

            for all     . 

        . Hence   is complete. 

Example 4. ℝ  with usual metric is complete. 

Proof. Let          
  .     

 . Let     be given. 

Then there exists a positive integer    such that            

for all       .  

        
    

 
  

    
 

  

   for all       .  

       
    

 
  

       for all       .  

   For each   1 2    we have  

     
    

    for all       .  
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  is a Cauchy sequence in ℝ for each   1 2    . 

Since ℝ is complete  there e ists    ℝ such that     
    . 

Let               . We claim that       . 

Since     
     there exists a positive integer    such that 

    
     

 

  
 for all     .  

Let    ma          . 

Then               
    

 
  

    
 

  

 

     
 

  
 

 

 
 

   for all     .  

        for all     . 

Thus               for all     . 

        . Hence ℝ  is complete. 

Example 5.    is complete. 

Proof. Let      be a Cauchy sequence in   . 

Let          
  .     

 .   

Let     be given. Then there exists a positive integer    

such that            for all       .  

   .  .        
    

 
  

    
 

  

   for all       .  

       
    

 
  

       for all       .              . 1  

For each   1 2  .. we have  

     
    

    for all       .  

      
  is a Cauchy sequence in ℝ for each  . 

Since ℝ is complete  there e ists    ℝ such that 

     
    .              2  

Let                .  . 
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 We claim that      and        .  

For any fixed positive integer  , we have  

Let     be given. Then there exists a positive integer    such 

that            for all       .  

                   
    

 
  

       for all       .        (using (1)) 

              Fixing   and allowing     in this finite sum we get 

                      
 
  

       for all     .        (using (2)) 

             Since this is true for every positive integer   

                     
 
  

       for all     .         .    

             Now,         
    

 
            

    
    

    
 

   

           
    

    
 

         
    

    
 

          (by 

Minkowski’s inequality  

                     
    

    
 

   for all     .       (using (3)) 

             Since       we have       
    

    
 

   converges. 

                      
    

 
   converges. 

                 . 

            Also (3) gives               for all     . 

                   .  

           Hence    is complete. 

Note. A subspace of a complete metric space need not be complete. 

For e ample ℝ with usual metric is complete. But the 

subspace    1  is not complete.                       (refer example 1). 

In the next theorem we give a necessary and sufficient 

condition for a subspace of a complete metric space to be complete. 
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Theorem 4. A subset   of a complete metric space   is complete iff   

is closed. 

Proof. Suppose   is complete. 

To prove that   is closed, we shall prove that   contains all its 

limit points. 

Let   be a limit point of  . 

Then by theorem 2, there exists a sequence      in   such 

that       . 

Since   is complete    . 

    contains all its limit points. 

Hence   is closed. 

Conversely, let   be a closed subset of  . 

Let      be a Cauchy sequence in  . 

Then      be a Cauchy sequence in   also and since   is 

complete there exists     such that       . Thus      is a 

sequence in   converging to  . 

     .         (by theorem 2) 

Now, since   is closed     . 

      .  

Thus every Cauchy sequence      in   converges to a point in 

 . 

    is complete. 

Note 1.    1  with usual metric is complete since it is a closed subset 

of the complete metric space ℝ. 

Note 2. Consider  . Since    ℝ,   is  not a closed subset of ℝ. 

Hence   is not complete. 

Solved problems 
Problem 1. Let     be subsets of ℝ. Prove that                  . 

Solution. Let                  . 

   There exists a sequence               such that 

               .     (by theorem 2) 
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           and         . 

Also,      is a sequence in   and      is a sequence in  . 

       and     .   (by theorem 2) 

             .  

                   .        .. 1  

Now, let            . 

       and     .     

   There exists a sequence      in   and a sequence       in 

  such that          and         . 

            is a sequence in     which converges to      . 

                   . 

                   .               2  

   By (1) and (2) we get                  .  

Theorem 5. (Cantor’s Intersection Theorem  

Let   be a metric space.   is complete iff for every sequence      of 

non-empty closed subsets of   such that  

             and          .    
 
    is nonempty. 

Proof. Let   be a complete metric space.  

Let       be a sequence  of closed subsets of   such that  

                      1  

And           .                . 2  

 We claim that    
 
    is nonempty. 

For each positive integer  , choose a point      . 

By (1),                all lie in   . 

(i.e.)       for all    .                        .    
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Since            given    , there exists a positive integer 

    such that         for all     .  

In particular,        .                            ..    

           for all       . 

Now,       
 for all     .    (by (3)) 

                  
.  

           .     (by (4)) 

       is a Cauchy sequence in  . 

Since   is complete there exists a point     such that 

      . 

We claim that         . 

Now, for any positive integer  ,                is a sequence 

in    and this sequence converges to  . 

      
 .    (by theorem 2) 

But   
  is closed and hence   

    . 

      .  

       
 
   . 

Hence      . 
    

To prove the converse let,      be any Cauchy sequence in  . 

let                  . 

                  .  

                  .   .   .   

                  .   .   .  

                  .   .   .  

              . .  .  

Clearly              

     
    

        
     

     
   is a decreasing sequence of closed sets. 
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Now, since      is a Cauchy sequence, given     there exists 

a positive integer   , such that            for all       . 

   For any integer     , the distance between any two points 

of    is less than  . 

                  for all     . 

But           
  . 

      
          for all     .              

        
     . 

Hence    
   . 

    

Let      
 . 

     Then   and      
 . 

              
  . 

                        for all     .    (by (5)) 

        . 

    is complete. 

Note 1. In the above theorem    
 
    contains exactly one point. 

For, suppose that    
 
    contains two distinct points   and  . 

Then              for all  . 

          does not tend to zero which is a contradiction.  

     
 
    contains exactly one point. 

Note 2. In the above theorem    
 
    may be empty if each    is not 

closed.  

For example, consider       
 

 
  in ℝ. 

Clearly              and          
 

 
    as 

   . 

But    
 
     . 

Note 3.  In the above theorem    
 
    may be empty if the hypothesis 

          is omitted.  

For example, consider          in ℝ. 

 

Complete Metric Spaces 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 



  

Clearly      is a sequence of closed sets and         

     . 

Also    
 
     . 

Here,         for all   and hence the hypothesis 

          is not true. 

5.3 BAIRE’S CATEGORY THEOREM 
In this section we prove a fundamental property of complete 

metric space called Baire’s Category theorem. 

Definition. A subset   of a metric space   is said to be nowhere 

dense in M if         . 

Definition. A subset   of a metric space   is said to be of first 

category in   if   can be expressed as a countable union of nowhere 

dense sets. 

A set which is not of first category is of second category. 

Note. If   is of first category then      
 
    where    is nowhere 

dense subsets in  . 

Example 1. In ℝ with usual metric    1 
 

 
 
 

 
   

 

 
  .   is nowhere 

dense. 

For,              1 
 

 
 
 

 
   

 

 
  .  . 

Clearly,         . 

Example 2. In any discrete metric space  , any non-empty subset   

is not nowhere dense. 

For, in a discrete metric space every subset is both open and 

closed. 

                    .  

          .  

    is not nowhere dense. 

Example 3. In ℝ with usual metric any finite subset   is nowhere 

dense. For, let   be any finite subset of ℝ. 

Then   is closed and hence     . 

Also since   is finite, no point of   is an interior point of  . 
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                .  

    is nowhere dense. 

Note. If   and   are sets of first category in a metric space   then 

    is also of first category. 

For, since   and   are of first category in   we have 

     
 
    and      

 
    where    and    are nowhere dense 

subsets in  . 

      is a countable union of nowhere dense subsets of  .   

(refer theorem 7 of unit 1) 

Hence     is of first category. 

We now give equivalent characterizations for nowhere dense 

sets. 

Theorem 6. Let M be a metric space and    . Then the following 

are equivalent. 

(i)   is nowhere dense in  . 

(ii)    does not contain any non-empty open set. 

(iii) Each non-empty open set has a non-empty open subset 

disjoint from   . 

(iv) Each non-empty open set has a non-empty open subset 

disjoint from  . 

(v) Each non-empty open set contains an open sphere disjoint 

from  . 

Proof is left as an exercise to the reader. 

Theorem  .  Baire’s Category Theorem  

Any complete metric space is of second category. 

Proof. 

Let M be a complete metric space. 

We claim that   is not of first category. 

Let      be a sequence of nowhere dense sets in  . 

We claim that      . 
    

Since   is open and    is nowhere dense, there exists an 

open ball say    of radius less that 1 such that    is disjoint from   .     

(refer theorem 3.6) 
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Let    denote the concentric closed ball whose radius is 
 

 
 

times that of   . 

Now        is open and    is nowhere dense. 

         contains an open ball    of radius less than 
 

 
 such that  

   is disjoint from   .      

Let    be the concentric closed ball whose radius is 
 

 
 times 

that of   . Now        is open and    is nowhere dense. 

         contains an open ball    of radius less than 
 

 
 such that  

   is disjoint from   .      

Let    denote the concentric closed ball whose radius is 
 

 
 

times that of   . 

Proceeding like this we get a sequence of non-empty closed 

balls exists a point   in   such that  

             .and       
 

  . 

Hence           as    . 

Since   is complete  by Cantor’s intersection theorem  there 

exists a point  in   such that      
 
   . 

Also, each    is disjoint from   . 

Hence      for all  . 

       
 
   .  

     
 
     . Hence   is of second category. 

Corollary. ℝ is of second category. 

Proof. We know that ℝ is a complete metric space. Hence ℝ is of 

second category. 

Note. The converse of the above theorem is not true. 

(i.e.) A metric space which is of second category need not be 

complete. 

For example, consider   ℝ     the space of irrational 

numbers. 
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We know that   is of first category. 

Suppose   is of first category. Then     ℝ is also of first 

category which is contradiction. 

Also   is not a closed subspace of ℝ and hence   is not 

complete. 

SOLVED PROBLEMS 
Problem 1. Prove that any nonempty open interval       in ℝ is of 

second category. 

Solution. Let       be a non-empty open interval in ℝ. 

Suppose       is of first category. 

Now,                    . 

        is of first category. 

But       is a complete metric space and hence is of second 

category which is a contradiction. 

        is of second category. 

Problem 2. Prove that a closed set   in a metric space   is nowhere 

dense iff    is everywhere dense. 

Solution. Let   be a closed set in  . 

     .            . 1  

Suppose   is nowhere dense in  . 

          .  

         .     by  1         2  

Now we claim that        .  

Obviously,        .          ..    

Now, let    . Let   be any  open set such that    . 

Since        , we have    . 

        .  

      .      

     is everywhere dense in  . 
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       Conversely let    be everywhere dense in  . 

                 . 

We claim that        . 

Let   be any non-empty open set in  .  

Since     , we have       . 

     .  

   The only open set which is contained in   is the empty set. 

         .  

          .    (by (1)) 

    is nowhere dense in  .   

CHECK YOUR PROGRESS 
 

1. If   and   are closed subset of ℝ prove that     is a closed 
subset in ℝ  ℝ. 

2. Consider ℝ with usual metric. Show that in any singleton set     is 
nowhere dense. 

 

5.4 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Since   and   are closed sets we have      and     .  

Now,                         (by problem 1). Therefore,  

    is a closed set. 

2. Consider ℝ with usual metric. Any singleton set     is 

nowhere dense. Therefore  any countable subset of ℝ begin a 

countable union of singleton sets is of first category. In particular   is 

of first category.   (refer theorem 3) 

5.5 SUMMARY 
1. Let       be a metric space. Let                    be a 

sequence of point in  . Let    . We say      is converges to   if 

given     there exists a positive integer    such that           

such that for all     . Also   is called a limit of     . 

2.        iff for each open ball        with center   there 

exists a positive integer    such that           for all     . 

3.        iff the sequence of real numbers            . 

4. For a convergence sequence      the limit is unique. 
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5. Let       be a metric space. Then any convergence sequence in 

  is a Cauchy sequence. 

6. A subset   of a complete metric space   is complete iff   is 

closed. 

7. Any complete metric space is of second category. 

5.6 KEYWORDS 
6. Converges: Let       be a metric space. Let      

              be a sequence of point in  . Let    . We say 

     is converges to   if given     there exists a positive 

integer    such that           such that for all     . 

7. Cauchy sequence: Let       be a metric space. Let      be a 

sequence of points in M.      is said to be a Cauchy sequence 

in   if given     there exists a positive integer    such that 

           for all       . 

8. Complete: A metric space   is said to be complete if every 

Cauchy sequence in   converges to a point in  . 

9. Nowhere dense: A subset   of a metric space   is said to be 

nowhere dense in M if         . 

10. First category: A subset   of a metric space   is said to be of 

first category in   if   can be expressed as a countable union 

of nowhere dense sets. 

11. Second category: A set which is not of first category is of 

second category. 

5.7 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Show that ℝ with usual metric is complete. 

2. Show that    1  with usual metric is complete.  

3. Prove that any discrete metric space is complete. 

4. Show that ℝ is of second category. 

5. Prove that union of a countable number of sets which are of 

first category is again of first category. 

6. Prove that ℝ  with each of the following metric is complete.  

a.         ma              1 2    . 

b.                 
 
   . 

7. Prove that    is a complete metric space for any   1. 
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UNIT-VI CONTINUITY 
STRUCTURE 

6.0 Introduction 

6.1 Objectives 

6.2 Continuity 

 6.3 Homeomorphism 

6.4 Uniform Continuity  

6.5 Answers to Check Your Progress Questions 

6.6 Summary 

6.7 Keywords 

6.8 Self Assessment Questions and Exercises 

6.9 Further Readings. 

6.0 INTRODUCTION 
In unit 5, we discussed the concept of convergence of a 

sequence in any metric space. The definition of continuity for real 

valued functions depends on the usual metric of the real line. Hence 

the concept of continuity can be extended for functions defined from 

one metric space to another in a natural way. 

6.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by continuous. 

 Determine homeomorphism. 

 Discuss uniform continuity. 

6.2 CONTINUITY 
Definition. Let         and         be metric spaces. Let         

be a function. Let         and     . The function   is said to have limit 

as     if given     there exists     such that             

            .  We write lim         . 
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Definition. Let         and         be two metric spaces. Let 

    . A function         is said to be continuous at   if given 

     there exists     such that                         

 .  

   is said to be continuous if it is continuous at every point of   . 

Note 1.   is continuous at   iff  lim            . 

Note 2. The continuous                           can be 

rewritten as  

(i)                         or 

(ii)                    . 

Example1.  Let         and         be two metric spaces. Then any 

constant function         is continuous. 

Proof. Let          be given by         where      is a fixed 

element. 

Let      and     be given. 

Then for any    ,                     . 

    is continuous at  . 

Since       is arbitrary,   is continuous. 

Example 2. Let         be a discrete metric space and let         be 

any metric space. Then any function         is continuous. 

i.e. Any function whose domain is a discrete metric space is  

continuous. 

Proof. Let      and     be given. 

Since    is discrete for any   1           . 

                            

   is continuous at  . 

We now give a characterization for continuity of a function at a point 

in terms of sequences converging to that point. 

Theorem 1. Let         and         be two metric spaces. Let 

    . A function         is continuous at   iff         

             . 
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Proof. Suppose   is continuous at  . Let      be a sequence in     

such that       . 

We claim that             . 

Let     be given. By the definition of continuity, there exists   

 such that                          .            .. 1  

Since       , there exists a positive integer    such that 

           for all     . 

                  for all                                 (by  (1)) 

             . 

Conversely, suppose                     . 

We claim that   is continuous at  . 

Suppose   is not  continuous at  . 

Then there exists an     such that for all            
 

 
   

         . 

In particular       
 

 
             

Choose    such that        
 

 
  and                . 

          
 

 
  and                 . 

        and         does not converges to      which is a 

contradiction to the hypothesis. 

   is continuous at  . 

Corollary. A function         is continuous iff         

             . 

We now characterize continuous mapping in terms of open sets. 

Theorem 2. Let         and         be two metric spaces. 

         is continuous iff         is open in    whenever   is 

open in   . 

(i.e.)   is continuous iff inverse image of every open set is open. 

Proof. Suppose   is continuous. 
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Let   be an open set in    . 

We claim that         is open in   . 

If        is an empty, then it is open.  

Let         . 

Let         . Hence       . 

Since   is open, there exists an open ball           such that 

           .       .. 1  

Now, by definition of continuity, there exists an open ball        

such that                     . 

            .     (By (1)). 

              .  

Since          is arbitrary,        is open. 

Conversely, suppose        is open in    whenever G is open in   . 

We claim that   is continuous. 

Let     . 

Now,           is an open set in   .  

                is open in    and                  . 

  There exists     such that                      . 

                    . 

   is continuous at  . 

Since      is arbitrary   is continuous. 

Note 1. If         is continuous  and   is open in   , then it is not 

necessary that      is open in    

(i.e.) Under a continuous map the image of an open set need not be 

an open set. 

For example let    ℝ with discrete metric and let    ℝ with 

usual metric. 

Let         be defined by       . 

Since    is discrete every subset of    is open. 
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Hence for any open subset   of      
      is open in   . 

   is continuous.  

Now,       is open in   . 

But          is not open in   . 

 

Note 2. In the above example f is a continuous bijection whereas 

          is not continuous. 

For,     is an open set in   . 

                 which is not open in   . 

     is not continuous. 

Thus if   is a continuous bijection,     need not be continuous. 

We now give yet another characterization of continuous functions in 

terms of closed sets. 

Theorem 3. Let         and         be two metric spaces.  A 

function          is continuous iff         is closed in    

whenever   is open in   . 

Proof. Suppose         is continuous. 

Let      be an closed in    . 

    is open in   . 

         is open in   . 

But                   . 

       is closed in   . 

Conversely, suppose        is closed in    whenever   is closed in 

  . We claim that   is continuous. 

Let    is an open set in   .  

    is closed in   .  

         is closed in   . 

            is closed in   . 

        is open in   . 
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   is continuous. 

We give one more characterization of continuous function in terms 

of closure of a set. 

Theorem 4. Let         and         be two metric spaces.  Then  

         is continuous iff                    for all     .  

Proof. Suppose   is continuous. 

Let     . Then        . 

Since   is continuous,                  is closed in   . 

Also,                                      (since                 . 

But    is the smallest closed set containing  . 

                   .   

                  . 

Conversely, let                  for all     . 

To prove that   continuous, we shall show that if   is a closed set in 

    then        is closed in   . 

By hypothesis,                                       

  .   

=  (Since   is closed). 

Thus                     . 

                  .  

Also 

                               .  

                       .  

Hence        is closed.  

   is continuous. 
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Solved problems 
Problem1. Let   be a continuous real valued function defined on a 

metric space  . Let               . Prove that   is closed. 

Solution.               . 

                 . 

           . 

Also,       is a closed subset of ℝ. 

Since   is continuous,            is closed in  . 

   is closed. 

Problem 2. Show that the function   ℝ  ℝ defined by  

      
                    
1                 

  

is not continuous by each of the following methods. 

(i) By the usual     method. 

(ii) By exhibiting a sequence      such that        and 

        does not converge to     . 

(iii) By exhibiting an open set   such that        is not open. 

(iv) By exhibiting closed subset   such that        is not 

closed. 

(v) By exhibiting an subset   of ℝ such that           .        

Solution (i). To prove that   is not continuous at   we have to show 

that there exists an     such that for all                

         . 

Let   
 

 
. 

For any                       contains both rational and 

irrational numbers. 

If   is rational, choose          such that   is rational.  

Then             1.                 (by definition of  ). 

(i.e.)              1. 

             
 

 
   

 

Continuity 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 



  

Thus          and             
 

 
  

                    .  

Hence   is not continuous at  . 

(ii) Let   ℝ . Suppose   is rational. Then      1. Let      be a 

sequence of irrational numbers such that       . 

Then           and      1. 

         does not converge to     . 

Proof is similar if   is irrational. 

(iii) Let    
 

 
 
 

 
 . Clearly   is open in ℝ. 

Now,           ℝ        . 

    ℝ       
1

2
 
 

2
  . 

  . 

But   is not open in ℝ. 

Thus        is not open in ℝ. 

   is continuous. 

(iv) Choose    
 

 
 
 

 
   

Then,          which is not closed in ℝ. 

   is not continuous. 

(v) Let    . Then    ℝ.    (refer example1) 

         ℝ     1        (by definition of  ). 

Also,            1 . 

             1   1 .  

                 .  

   is not continuous. 

Problem 3. Let          be metric spaces. If         and  

        are continuous functions, prove that           is 

also continuous. 

(i.e.) composition of two continuous functions is continuous. 

Solution. Let   be open in   . 

Since   is continuous,        is open in   . 

Now, since   is continuous,              is open in   . 

(i.e.)            is open in   . 
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     is continuous. 

Problem 4. Let   be a metric space. Let     ℝ and     ℝ be 

two continuous functions. Prove that       ℝ is continuous. 

Solution. Let      be a sequence converging to   in  . 

Since   and   are continuous functions,              and , 

            .       

                         . 

(i.e.) ,                      

      is continuous. 

Problem 5. Let     be continuous real valued functions on a metric 

space  . Let                        . Prove that   is open. 

Solution. Since   and   are continuous real valued function on 

      is also a continuous real valued function on  . 

Now                    . 

                   .  

                    

                      

. 

                .  

Now,        is open in ℝ  and     is continuous. 

Hence                 is open in  . 

   is open in  . 

Problem 6. If   ℝ  ℝ and   ℝ  ℝ be two continuous functions on 

ℝ and if    ℝ  ℝ  is defined by                    prove that   

is continuous on ℝ . 

Solution. Let         be sequence in ℝ  converging to      . 

We claim that            converges to       . 

Since                 in ℝ ,        and        in ℝ. 

Also   and   are continuous.  

              and             . 
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                           . 

                  . 

   is continuous on ℝ . 

Problem 7. Let       be a metric space. Let    . Show that the 

function     ℝ defined by             is continuous. 

Solution. Let    . 

Let      be a sequence in   such that       . 

We claim that             . 

Let     be given. 

Now,                                      . 

Since,         then there exists a positive integer    such that 

          for all     . 

                for all     . 

             .  

    is continuous. 

Problem 8. Let   be a function from ℝ  onto ℝ defined by          

for all       ℝ . Show that   is continuous in ℝ . 

Solution. Let       ℝ . 

Let           be a sequence in ℝ converging to      . 

Then        and       . 

                   =      .  

                  .  

   is continuous. 

Problem 9. Define         as follows. If      is the sequence 

       . let      be the sequence          . Show that   is 

continuous on    . 

Solution. Let           .           . 

Let      be a sequence in    converging to  . 
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Let        
    

  .     
   . 

Then     
    ,     

       .     
      .. 

                
    

  .     
               .         

    .  

             .  

   is continuous. 

Problem 10. Let G be an open subset of ℝ. Prove that the 

characteristic function on   defined by        
1       
         

 is 

continuous at every point of  . 

Solution. Let      so that       1. 

Let     be given. 

Since   is open and     , we can find a     such that         . 

                 . 

  1 .  

   1   .  

Thus                      . 

    is continuous at  . 

Since     is arbitrary,    is continuous on  . 

6.3 HOMEOMORPHISM 
Definition. Let         and         be metric spaces. A function 

        is called a homeomorphism if  

(i)   is 1-1 and onto. 

(ii)   is continuous. 

(iii)     is continuous. 

    and    are said to be homeomorphic if there exists a 

homeomorphism        . 

Definition. A function         is said to be an open map if      is 

open in    for every open set   in   . 
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(i.e.)   is an open map if the image of an open set in    is an open set 

in   . 

  is called a closed map if      is closed in    for every closed set   

in   . 

Note 1. Let         be a 1-1 onto function. Then     is 

continuous iff   is an open map. 

For,     is continuous iff for any open set   in     
         is open 

in   .  

But                . 

     is continuous iff for every open set   in   ,      is open in   . 

     is continuous iff   is an open map. 

Note 2. Similarly     is continuous iff   is a closed map. 

Note 3. Let         be a 1-1 onto map. Then the following are 

equivalent. 

(i)   is homeomorphism. 

(ii)   is continuous open map. 

(iii)   is a continuous closed map. 

Proof. (i)  (ii) follows form Note 1 and the definition of 

homeomorphism. 

(i)  (iii) follows form Note 2 and the definition of homeomorphism. 

Note 4. Let         be a homeomorphism.      is open in    

iff      is open in   . 

For, since   is an open map   is open in         is open in   . 

Also since   is continuous,      is open in                 is 

open in   . 

   is open in    iff      is open in    .                      1  

Conversely, if         is a 1-1 onto map satisfying (1) then   is 

homeomorphism. 

Thus a homeomorphism         is simply a 1-1 onto map 

between the points of the two spaces such that their open sets are 

also in 1-1 correspondence with each other. 
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Note 5. Let         be a 1-1 onto map. Then   is a 

homeomorphism iff it satisfies the following condition. 

  is closed in     iff      is closed in    . 

Example 1. The metric spaces    1  and    2  with usual metric are 

homeomorphic. 

Proof. Define      1     2  by      2 . 

Clearly,   is 1  1 and onto. 

Also        
 

 
 . 

We note that   and     are both continuous. 

   is homeomorphism. 

Example 2. The metric spaces       and ℝ with usual metrics are 

homeomorphic. 

Proof.         ℝ by      log   is the required 

homeomorphism. Here          . 

Example 3. The metric spaces  
  

 
 
 

 
  and ℝ with usual metric are 

homeomorphic and    
  

 
 
 

 
  ℝ defined by      tan   is the 

required homeomorpism. 

In this example,  
  

 
 
 

 
  is not a complete metric space whereas ℝ is 

complete. 

This shows that completeness of metric spaces is not preserved 

under homeomorphism. 

Example 4. The metric spaces    1  and       with usual metrics are 

homeomorphism.  

Proof. Define      1          by      
 

   
.  

We claim that   is 1-1 and onto.  

Let          . 

 
 

   
 

 

   
.  

          .  

    . Hence   is 1-1.  
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Let        . 

        
 

   
  .  

       .  

   1      .  

   
 

   
.  

 
 

   
    1  is the preimage of   under  . 

Clearly   and     are continuous.  

   is homeomorphism. 

Example 5. ℝ with usual metric is not homeomorphic to ℝ with 

discrete metric. 

Proof. Let    ℝ with usual metric. 

Let    ℝ with discrete metric. 

Let         be any 1-1 onto map. 

Now,     is open in   . 

But                    is not open in   . 

Hence   is not continuous. 

Thus any bijection         is not a homeomorphism. 

Hence    is not homeomorphism. 

Definition. Let         and         be two metric spaces. 

Let         be a 1-1 onto map.   is said to be an isometry if 

                      for all       . In other words, an 

isometry is a distance preserving map. 

   and    are said be isometric if there exists an isometry   from    

onto   . 

Example 6. ℝ  with usual metric and   with usual metric are 

isometric and   ℝ    defined by             is the required 

isometry. 

Proof. Let     denote the usual metric on ℝ  and    denote the usual 

metric on  .  
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Let           and           ℝ . 

Then                              

                     

 

                      

               

   is an isometry. 

Note. Since an isometry   preserves distances, the image of an open 

ball        is the open ball          . 

Hence it follows that under an isometry the image of an open set is 

also an open set. Also if   is an isometry     is also an isometry.  

Hence under an isometry the inverse image of an open set is open. 

Hence an isometry is a homeomorphism. 

However a homeomorphism from one metric space to another need 

not be an isometry. 

For example,      1     2  defined by      2  is a 

homeomorphism.        (refer example 1) 

But   is not an isometry.      (refer example 6). 

6.4 UNIFORM CONTINUITY 
Introduction. In this section we introduce the concept of uniform 

continuity.  

Definition. Let         and         be two metric spaces. Let 

        be a continuous function. For each      the following 

is true. Given    , there exist     such that 

                         . 

In general the number    depends on    and the point   under 

considertation. 

For example, consider   ℝ  ℝ given by        . 

Let   ℝ. Let     be given.  

We want to find     such that  

                     .             1  
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Clearly, if     satisfies (1), then any    where        also 

satisfies (1).  

Hence if there exists a     satisfying (1), then we can find another 

   such that       1 and    also satisfies (1). 

Hence we may restrict   such that       1. 

   1      1. 

     2  1. 

                                

  2  1       if       1. 

Hence if we choose   min 1 
 

      
  then we have          

             . 

Thus, in this example we see that the number   depends on both    

and the point   under consideration and if   become larger,   has to 

be chosen correspondingly small. In fact, there is no     such that 

(1) holds for all  . 

For, suppose there exists     such that  

                      for all   ℝ. 

Take     
 

 
 . 

Clearly,       
 

 
   . 

              . 

     
1

2
  

 

      . 

 
1

2
  

1

2
  2    . 

However this equality cannot be true for all   ℝ, since by taking   

sufficiently large, we can make 
 

 
  

 

 
  2    . 

Thus, there is no     such that (1) holds for all   ℝ. 

Let   ℝ  ℝ be given by       2 . 

Let   ℝ. Let     be given. 
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Then              2  2   2     . 

  If we choose   
 

 
  then we have                      . 

Here   depends on   and not an  . 

(i.e.) for  a given     we are able to find     such that   works 

uniformly for all   ℝ. 

Definition. Let         and         be two metric spaces. 

A function         be a uniformly continuous on    if given   

 , there exist     such that 

                         . 

Note 1. Uniformly continuity is a global condition on the behavior of 

a mapping on a set so that it is meaningless to ask whether a 

function is uniformly continuous at a point. Continuity is a local 

condition of the behavior of a function at a point. 

Note 2. If         is uniformly continuous on    then   is 

continuous at every point of   . 

Moreover for a given    , there exist     such that        and  

                         . 

Thus, uniformly continuity is a continuity plus the added condition 

that for a given     we can find      which works uniformly for 

all points of    . 

 

                         . 

Note 3. A continuous function         need not be uniformly 

continuous on   . 

For example,   ℝ  ℝ defined by         is continuous but not 

uniformly continuous ℝ. 

Solved problems 
Problem 1. Prove that      1  ℝ defined by         is uniformly 

continuous on    1 . 

Solution. Let     be given. Let        1 . 

Then  
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           (since   1 and   1) 

       
1

2
               . 

   is uniformly continuous on    1 . 

Problem 2. Prove that the function      1  ℝ defined by      
 

 
 

is not uniformly continuous. 

Solution. Let     be given. Suppose there exist     such that 

                     . 

Take     
 

 
 . 

Clearly        
 

 
   . 

              .  

 
 

 
 

 

 
  .  

  
 

  
 

 
 
 

 

 
   .  

  
 

    
 

 
  

 
 

 
   .  

  
 

       
   .  

This inequality cannot be true for all      1  since 
 

       
 becomes 

arbitrarily large as   approaches zero. 

   is not uniformly continuous. 

Problem 3. Prove that the function   ℝ  ℝ defined by      sin   

is uniformly continuous ℝ. 

Solution. Let     ℝ and    . 

sin   sin        cos   where         (by mean value 

theorem) 

  sin   sin          cos    

         (since         1 . 

Hence for a given    , if we choose    , we have  

                     sin   sin     . 
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      sin   is uniformly continuous on ℝ. 

CHECK YOUR PROGRESS 
 

1. Let     be the usual metric on    1  and    be the usual metric on 
   2 . The map      1     2  defined by      2  is not an 
isometry.  

2. Define open map. 

 

6.5 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let        1 . Then                            2  2   

 2      2       . Therefore,                     .  

Hence   is not an isometry. 

2. A function         is said to be an open map if      is open 

in    for every open set   in   . 

6.6  SUMMARY 
7. Let       be a metric space. Let                    be a 

sequence of point in  . Let    . We say      is converges to 

  if given     there exists a positive integer    such that 

          such that for all     . Also   is called a limit of 

    . 

8.    is said to be continuous if it is continuous at every point of 

  . 

9.   is continuous at   iff  lim            . 

10. Let         and         be two metric spaces. Then any 

constant function         is continuous. 

11. Let         be a discrete metric space and let         be any 

metric space. Then any function         is continuous. 

12. Let         and         be two metric spaces. Let     . A 

function         is continuous at   iff         

             . 

13.   is continuous iff inverse image of every open set is open. 

14.   is an open map if the image of an open set in    is an open 

set in   . 

6.7 KEYWORDS 
1. Limit: Let         and         be metric spaces. Let         be a 

function. Let         and     . The function   is said to have limit as 

    if given     there exists     such that             

            .  We write lim         . 
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2. Continuous: Let         and         be two metric spaces. 

Let     . A function         is said to be continuous at   if 

given      there exists     such that           

               .  

3. Homeomorphism: Let         and         be metric spaces. 

A function         is called a homeomorphism if (i)  is 1-1 and 

onto. (ii)   is continuous. (iii)     is continuous. 

4. Homeomorphic:    and    are said to be homeomorphic if 

there exists a homeomorphism        . 

5. Open map: A function         is said to be an open map if 

     is open in    for every open set   in   . 

6. Closed map:  I  is called a closed map if      is closed in    

for every closed set   in   . 

7. Uniformly continuous: Let         and         be two metric 

spaces. 

8. A function         be a uniformly continuous on    if 

given    , there exist     such that 

                         . 

6.8 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Show that any function whose domain is discrete metric 

space is continuous. 

2. Let   ℝ  ℝ   is defined by               show that 

  is continuous on ℝ . 

3. Prove that any two open intervals are homeomorphic. 

6.9 FURTHER READINGS 
1. Arumugam & Issac, Modern Analysis, New Gamma Publishing 

House, Palayamkottai, 2010. 

2. Richard R. Goldberg, Methods of Real Analysis, Oxford & IBH 

Publishing Company, New Delhi. 

3. D. Somasundaram & B. Choudhary, A first course in 

Mathematical Analysis, Narosa Publishing House, Chennai. 

4. M.K. Singhal & Asha Rani Singhal, A First Course in Real 

Analysis, R. Chand & Co., June 1997 Edition. 

5. Shanthi Narayan, A course of Mathematical Analysis, S. Chand 

& Co., 1995. 

 

 

 

 

Continuity 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 

 



  

UNIT-VII DIFFERENTIABLE FUNCTION 
STRUCTURE 

7.0 Introduction 

7.1 Objectives 

7.2 Differentiability of a function  

 7.3 Derivability & Continuity  

7.4 Algebra of derivatives 

7.5 Inverse Function Theorem 

 .  Daurbou ’s Theorem on Derivatives 

7.7 Answers to Check Your Progress Questions 

7.8 Summary 

7.9 Keywords 

7.10 Self Assessment Questions and Exercises 

7.11 Further Readings. 

7.0 INTRODUCTION 
In this chapter, we shall introduce the notion of the 

derivation of the function and the properties of such functions. We 

shall consider only real valued functions defined on intervals. 

7.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by differentiability of functions. 

 Determine derivability and continuity. 

 Discuss algebra of derivatives. 
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7.2 DIFFERENTIABILITY OF A FUNCTION 
Definition. Let   be a be a real valued function defined on an interval 

  ℝ. If    , then   is said to have a derivative at      if 

lim   
         

 
 exists. If this limit exists, then   is said to be 

differentiable at   and its derivative is denoted by      . Note that 

this limit is a real number. If we make the substitution        

then the above limit can also be written as  lim   
           

 
. 

                     Thus if   is the set of points of   at which       exists and 

   , then    is itself a real valued function on  . If    is defined on 

 . If    is defined at every point of    then   is said to be 

differentiable on  . It is possible that     and there are functions 

which are differentiable at some points in the domain but not at 

other points of the domain. 

7.3 DERIVABILITY & CONTINUITY 
Theorem 1. If the real valued function   is differentiable at the point 

  ℝ  then   is continuous at  .   

Proof. We know that   is continuous at     if lim
   

          or 

equivalently lim
   

             . 

For,      we have           
         

     
     . 

Since lim   
         

     
       and lim

   
       . 

We get lim
   

                 .    . 

Therefore, if   is differentiable at      then it is continuous 

at    . 

The converse of the above theorem is false. There exists 

functions continuous at a point but not differentiable at the point. We 

shall illustrate this by an example. 
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Example 2. Let          for         . This function is 

continuous everywhere and in particular it is continuous at    . 

If                 and if                 . 

Hence, we have  
         

   
 

 

 
 1 if     and 

         

   
 

  

 
 

 1 if    .  

Therefore,       
         

   
 does not exist. Thus   does not 

have a derivative at 0, even though   is continuous at 0. 

 

Example 3. Let           for   ℝ then       2    for every   in 

ℝ. 

From the definition of the function,         if     and 

         if    . If    , then we have 

      lim   
           

 
 lim   

           

 
. 

Since      , when     is sufficiently small,  

       lim   
      

 
 lim    2     2 .  

If    , then 

       lim   
           

 
 lim   

            

 
 

Since      , when     is sufficiently small, 

       lim   
       

 
 lim     2      2 .  

Let us consider the case when      

                   lim   
           

 
 lim   

    

 
 lim        .  

Combining all  the above three cases, we get       2    for 

every   in ℝ. 
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Note. The function    may have a derivative denoted by     which is 

defined at all points where    is differentiable.     is called the 

second derivative of  . 

7.4 ALGEBRA OF DERIVATIVES 
The next theorem gives the different formulae for 

differentiating the sum, difference, product and quotient of two 

functions. 

Theorem 4. If   and   are both differentiable at     in ℝ  then 

       and    are differentiable and have derivatives given by  

(i)                      . 

(ii)                       . 

(iii)                               . 

(iv) Furthermore, if        , then     is differentiable at 

  and has derivative given by  

 
 

 
 

 

 
                    

       
. 

Proof. We shall prove (iii) and (iv), since (i) and (ii) can be proved 

easily. To prove (iii), let     . Then for      we get 

                              

                               

          

And so, 
         

   
 

         

   
         

         

   
  

Since lim   
         

     
      , lim   

         

     
              

By Theorem 1, lim
   

         . Hence, by using the theorem 

on limits,   has a derivative at   and 

        lim
   

         

     
=                     . 

To prove (iv), let      . Then we have, 
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  .  

Since      and      are differentiable at   having the 

derivatives       and       and when     lim
   

         , we get 

from the above 

       
         

     
 

                   

     
.  

Example 5. The derivative of any constant is zero. If         then 

      1. By using (iii) repeatedly we see that    is differentiable 

and the derivative is       for any integer    when    . Thus a 

polynomial is differentiable and using (iv) repeatedly we see that 

every rational function is differentiable except at the point where the 

denominator is zero. 

               For two functions   and  , the composite function 

      is defined at each point  ,                      . 

Theorem 6. If   is differentiable at  , and   is differentiable at 

      then       is differentiable at   and has the derivative 

                   . 

Proof. Let   be differentiable at   and   be differentiable at       . 

It is assumed that   is defined in some neighbourhood of   and that 

  is defined in some neighbourhood of       . 

  is continuous at   and   is continuous at       . Thus 

      is continuous at    . 

Let us define      
         

   
      . 

Since lim   
         

     
 exists,      exists in a deleted 

neighbourhood of   and        as    . Hence, if   is 

differentiable at  , we can write 

                           .  
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Similarly, since   is differentiable at       . We have 

                            where        as    . 

Now, we have  

                                        . 

  

                               

                               .  

                                 . 

If      we get 

 
         

   
                         . 

If we take the limit as     and note that by theorem 1,   is 

continuous at    we see that              . 

Hence,        and       . Therefore,  

            

         

   
           . 

This complete the proof of the chain rule on differentiation. 

The following theorem known as Inverse function theorem 

gives the relationship between the derivatives of inverse functions. If 

  is 1  1 function on      , then                   where   is 

the inverse function for  . 

7.5 INVERSE FUNCTION THEOREM 
Theorem 7. (The Inverse Function Theorem). Let   be a 1  1 real 

valued function on I. Let   be its inverse function. If   is continuous 

at      and   has the derivative at        with          then 

      exists and       
 

     
. 
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Proof. For    , let                 . Since   is 1-1,        for 

   . From this, we get 

                        .  

Hence, we have                          since   is the 

inverse function of  . 

Now we have  
           

 
 

          

     
  

            
    

              
  

                       
 

                     
         .. 1  

By hypothesis   is continuous at  . So lim         . 

Thus, when    , the right side of (1) tends to the limit 
 

     
. 

Hence we have  

 lim   
           

 
 

 

     
.  

This completes the proof of the theorem. 

Example 8. Using the Inverse Function Theorem, find the derivative of 

      
 

   where     and    . 

The inverse function of   is   . Let        . At any point   

 ,            . Hence, by the theorem  

      
1

        
 

1

 .  
     

  
 

1

 
.         . 

 

7.6 DAURBOUX’S THEOREM ON DERIVATIVES 
Theorem 9. (darboux property). If   has a derivative at every point of 

the closed interval      , then    takes on every value between       

and      . 
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Proof. It is enough if we consider the case in which            . 

Thus if                we have to show that there exists a   in 

      such that        .  

Let us now define the function   on       as             

for      . From this we have as               for      .  

Thus       exists for all   in       and   is continuous on 

      by theorem 1. Hence, by Theorem 8,   takes a minimum value 

at some point        . But                . Since         

at    ,   cannot attain its minimum value at    . For the 

minimum value of   at  ,         by theorem 6. Similarly 

               . So   cannot attain its minimum value at 

    also. Thus we have      . We have         which 

proves the theorem. 

Example 10. Let        for  1      and      1 for 

    1. Is there a function   such that            in [-1,1] ? 

Suppose there exists a function   such that            in [-

1,1]. Then, since      is defined in [-1,1],    exists at every point of 

  1 1 . So by the above Darboux property,    takes every value 

between     1  and    1 . But    1     1    and    1  

  1  1. So    take every value between 0 and 1. But this cannot 

happen, since    takes only two values 0 and 1 from the definition of 

   in [-1,1]. So there is no function satisfied the given condition. 
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CHECK YOUR PROGRESS 
 

1. State inverse limit theorem. 
2. State Darboux property. 

 

7.7 ANSWER TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let   be a 1  1 real valued function on I. Let   be its inverse 

function. If   is continuous at      and   has the derivative at 

       with          then       exists and       
 

     
. 

2. If   has a derivative at every point of the closed interval      , 

then    takes on every value between       and      . 

7.8  SUMMARY 
15. If the real valued function   is differentiable at the point 

  ℝ  then   is continuous at  .   

16.   If   is differentiable at  , and   is differentiable at       then 

      is differentiable at   and has the derivative 

                   . 

7.9 KEYWORDS 
9. Derivative: Let   be a be a real valued function defined on an 

interval   ℝ. If    , then   is said to have a derivative at 

     if lim   
         

 
 exists. If this limit exists, then   is said to 

be differentiable at   and its derivative is denoted by      . Note 

that this limit is a real number. If we make the substitution 

       then the above limit can also be written as  

lim   
           

 
.  

7.10 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. If           for   ℝ  find       and       . 

2. If          , prove that        2 if      and         2 if 

   . 

3. Suppose   is differentiable at     and        . Prove that     

is differentiable at   and find        . 
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4. If   is a function  such that    is derivable at  , dose it follow 

that   is derivable at  ? 

5. Show that the function   defined by        cos
 

 
  if 

    and       . 

7.11 FURTHER READINGS 
1. Arumugam & Issac, Modern Analysis, New Gamma Publishing 

House, Palayamkottai, 2010. 

2. Richard R. Goldberg, Methods of Real Analysis, Oxford & IBH 

Publishing Company, New Delhi. 

3. D. Somasundaram & B. Choudhary, A first course in 

Mathematical Analysis, Narosa Publishing House, Chennai. 

4. M.K. Singhal & Asha Rani Singhal, A First Course in Real 

Analysis, R. Chand & Co., June 1997 Edition. 

5. Shanthi Narayan, A course of Mathematical Analysis, S. Chand 

& Co., 1995.  

  

 

Differentiable function 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 

 



  

 Structure 

8.0 Introduction  

8.1 Objectives  

8.2 Rolle’s Theorem 

8.3 Mean Value Theorems on Derivatives 

            8.4 Taylor’s Theorem with Remainder 

 8.5 Power Series Expansion 

8.6 Answers to Check Your Progress Questions 

8.7 Summary 

8.8 Keywords 

8.9 Self Assessment Questions and Exercises 

8.10 Further Readings 

 From elementary calculus, we know that the derivative of a real-

valued function   on   at   gives the slope of the tangent to the curve 

       at    . Let   have derivatives at all points of   . Then  

       has tangents at all points of  . If       exists, then the curve 

is said to be smooth at    . We have already noted in the previous 

section that if a real valued continuous function defined on the 

closed and bounded intervals attains the extremum value at   where 

    and       exists, then        . If the curve        has its 

end points on the  -axis (the curve crosses the  -axis at both the end 

points of the interval) and if it is smooth, it is geometrically evident 

that there will be horizontal tangent at some point on the curve. That 

is at some point on the curve,    will become zero. This result is 

made precise in the following theorem known as Rolle’s Theorem 

which is an important result in the differential calculus. We shall 

discuss in detail even the slight variation of the theorem so that 

readers will become familiar with all the aspects of this basic 

theorem in differential calculus. 

8.1 OBJECTIVES 

After going through this unit, you will be able to: 

UNIT-8 POWER SERIES 

8.0 INTRODUCTION 
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 Understand what is meant by Rolle’s Theorem  Mean 

value theorem  

 Discuss the Fundamental theorem of calculus 

 Discuss the properties of Power series expansion 

8.2 ROLLE’S THEOREM 

Theorem 1.                    If   is continuous real-valued function 

defined on a bounded and closed interval       with              

 

and differentiable at every point   in the open interval       such 

that        . 

Proof.  If   is identically zero on      , it attains a maximum and a 

minimum valu on      . If        for some   in      , the 

maximum value of   on       will not be attained at   or , sincev 

b

c

c 

c

c 

a 
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b

c
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c

c 

a 

        



  

            by hypothesis. Hence,   will attain its maximum 

value will be attained in       so that for a point   in      ,       . 

Corollary.  If      is a polynomial, then between any two roots of 

      ,there exists at least one root of        . 

Proof. Let   and   be two roots of     . Since      is  a polynomial, 

     is continuous in       and derivable at every point of      . 

Since   and   are the roots of     , we get            . Hence, 

by  Rolle’s theorem  there e ists at least one point   in       such 

that        . This means that there exists at least   one root of 

       . 

Note 1. The following statement of Rolle’s theorem is an alternative 

form where we do not assume that   vanishes at     and    . 

We shall give an independent proof of the theorem. 

Theorem 2.  If a function   is continuous in       with           

and if   is differentiable at every point of      , then there exists at 

least one point   in       such that        . 

Proof.  If   is constant throughout      , then    is zero at all points of 

      so that the theorem is true. 

                        Let   be not constant throughout      . Since   is 

continuous in      , it is bounded in       and it attains one or other 

of its bounds in       which is different from     . Let   be its upper 

bound. Then   attains its upper bound at least once in      . Then 

for all values   in                . So when   is an infinitesimal, 

we get 

             . 

If   is positive, we get 

           

 
   

So that                           lim   
           

 
  . 

The above inequality implies that                            (1) 

   If   is negative, then we get 
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So that                              lim   
           

 
  . 

The above inequality implies that                                   (2) 

Combining (1) and (2), we get         

 Similarly we prove the theorem when   attains its lower 

bound in       which is different from     . 

Corollary.   Theorem 1 can be deduced from Theorem 2. 

Note 2.  The above theorem can be stated in a slightly different form 

as follows. 

Theorem 3. Let   be differentiable at every point of an open interval 

     and let   be continuous at both the end points   and  . If 

         , there is at least one point    in       at which        . 

  Since   is differentiable at every point in the open 

interval     , it is continuous in      . By hypothesis, it is 

continuous at both the end points   and  . So   is continuous in the 

bounded closed interval      . Further note that we do not assume   

           . It is enough modified for this slightly different 

form of the theorem, we shall give a different proof due to its 

importance. 

Proof.   Under the hypothesis, we shall assume that    is never 0 in 

      and arrive at a contradiction. Since    is continuous on the 

bounded and closed interval      , it attains its maximum   and its 

minimum   at some points in      . None of the extreme values are 

attained at a point of      . For if it attains the extreme values at the 

points in          would vanish in       which is against our 

assumption. So they are both attained at the end points. Since  

           then     and hence   is constant on       so that    

is zero on      . This contradicts our assumption that     is never 

zero on      .  Hence, for some point   in      ,       . 

Note.   None of the conditions in the Rolle’s theorem can be rela ed 

as shown by the following Examples 1 to 3 

Example 1.   Let        if      1  and        if   1. 

g is differentiable in the open interval and g(0)   g(1) = 0. It is  

continuous in the open interval    1  but not in the closed interval 

   1 ,  since it is not left continuous at the right end point   1. 

Since g’    1 for every      1 , there is no point   in    1  with 
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g'     . This shows that the loss of continuity at an end point is 

enough for the failure of the Rolle’s theorem. 

Example 2.   let      1      for     1 1 . Now    1    1    

and   is a continuous function on   1 1 . Since   
  and   

  are different 

at    ,   obeys all differentiable at    . So   is not differentiable 

in   1 1 . Thus   obeys all the hypothesis of  Rolle’s theorem e cept 

that it is not differentiable at    . For this    there is no point   in 

  1 1  for which        . Hence  the conclusion of  Rolle’s theorem 

is not true, if we weaken the assumption of the open interval. 

Example 3.   Let        in    1 . Then      is continuous in    1  

and derivable in    1 . But        1 . There is no point   in    1  

such that         . 

Example 4.   Verify whether the function      sin   in       

satisfies the conditions of Rolle’s theorem and hence find   as 

prescribed by the theorem.  

 We know that the function given by      sin   in       is 

continuous in       and differentiable everywhere in     . Further 

           . Hence,   satisfies the conditions of the Rolle’s 

theorem. At  2       ,       cos    . So    vanishes at 

 2       . Hence  in the Rolle’s theorem    2 . 

Example 5.   Verify the Rolle’s theorem for the function      

 1       1    1 . 

 It is to be noted that   is continuous in the closed interval 

  1 1  and it is not derivable in   1 1 , since this function has no 

derivatives at    1 or 1. It is differentiable in  1 1 . Now if   

 ,we get        . Thus the Rolle’s theorem is true. 

Example 6.   Prove that there is no value of    such that the equation  

          has  two distinct roots in    1 . 

 Let us suppose  on the contrary that there is a real number    

such that             has    and   as its distinct roots in    1  

where     and    . Now     and        1  implies 

    1 and     1. Since   and   are the roots of the above 

equation, we have           ,           . Now consider 

the function      defined in       as follows: 
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              for        . 

Since      is a polynomial in   of degree 3, it is continuous on       

and it is derivable in       with            . Hence, all the 

conditions of Rolle’s theorem are satisfied by      in      . 

Therefore, there exists         such that        . This implies 

       . Hence,    1     1 . This implies         which 

contradicts our assumption that     1 and     1. Therefore, 

there exists no real number   for which the given equation has two 

distinct roots in    1 . 

Example 7.   Prove that if 
  

   
 

  

 
   

    

 
       then the 

equation    
     

           has at least one root between 

  and 1. 

 Now consider the function defined by  

       
    

   
 

    

 
        in [0,1]. 

Then   1    by hypothesis and       . So   1        . 

Since   is a polynomial of degree   in    1 , it is continuous and 

differentiable in    1 . Therefore   the hypothesis of Rolle’s theorem 

are satisfied. Hence         for some      1 . So          
  

    
           for some      1 . 

We have already shown in the Example 7 of 7.1, that a function can 

have a derivative at each  point of the interval but the derivative 

considered as a function need not be continuous. The following 

theorem shows that although they are not necessarily continuous, 

and derivatives like continuous functions satisfy the intermediate 

value property. 

Theorem 4. (Darboux Property). If   has derivative at every point of the closed 

interval      , then    takes on every value between       and      . 

Proof.   It is enough if we consider the case in which             . 

Thus if              , we have to show that there exists a   in 

      such that        . Let us now define the function g on       

as g            for       . From this we have g'    

        for       . Thus g     exists for all   in       and g is 

continuous on       by Theorem 1 of 7.1. Hence, by Theorem 8 of 4.5, 

g takes a minimum value at some point        . But  g'    

         . Since g       at    , g cannot attain its minimum 

value at    . For the minimum value of g at  , g       by 

Theorem 6 of 7.1. similarly g              . So g cannot attain 
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its minimum value at     also. Thus we have      . We 

have         which proves the theorem. 

We shall illustrate the use of above theorem by the following 

example. 

Example 8.   Let        for  1      and      1 for     1. 

Is there a function   such that  

           in   1 1   

Suppose there exists a function   such that            in   1 1 . 

 Then, since      is defined in   1 1 ,    exists at every point 

of   1 1 . So by the above  

Darboux property,    takes every value between     1  and    1 . 

But     1     1    and  

   1    1  1. 

 So    should take every value between   and 1. But this 

cannot happen, since    takes only two values   and 1 from 

the definition of    in   1 1 . So there is no function   

satisfying the given condition. 

 In the above example, it is important to note that   is not a 

continuous function in   1 1  and   is not the derivative of 

any function   in   1 1 . But it will be shown later that if   is a 

continuous function on      , there can exists a function   on 

     , such that  

           for all   in      . 

8.3 MEAN VALUE THEOREM FOR 
DERIVATIVES 

If we consider a smooth curve        in      , it is 

intuitively clear that at some point   in      , the Slope of the tangent 

      at     will be equal to the slope of the chord joining the 

points   and   on the curve. This leads to the following theorem 

known as the mean value theorem for derivatives. 

The most important aspect of the mean value theorem for 

derivatives is that it gives a relation between the derivative and the 

function so that we can obtain information about the function from 
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the properties of the derivatives. We shall use Rolle’s theorem to 

prove the following mean value theorem. 

Theorem 1.  (Mean Value Theorem for Derivatives).  If   is a 

continuous function on the closed and bounded interval       and if 

      exists for all   in the open interval       such that  

      
         

   
 

Proof.  Let us consider the function   defined as follows: 

               
         

   
      

when      . From the definition of  , we have 

           . Further   is continuous in the closed interval       

and differentiable in the open interval      . So   satisfies all the 

conditions of the Rolle’s Theorem. Hence  there e ists a point   in the 

open interval       such that        . 

But                                                       
         

   
 which proves that  

      
         

   
. 

The above theorem is also known as Lagrange’s Mean Value 

Theorem. It is important to note that the theorems do not exactly 

locate the positions of the points like   where the function takes one 

or more mean values. But what all it asserts is that the point lies 

between   and  . For some functions, the position of the point   may 

be specified well, but in most of the case it is very difficult to 

determine these points. 

Note.  The conclusion of the theorem may fail to be true if there is 

any point between   and   where the derivative of the function does 

not exist as shown by the following example. 

Example 1.  Let         . This function is continuous everywhere 

on the real axis and has derivatives at all points of the real axis 

except at    . Now consider the interval   1 2 ,         1  1, 

       2  2. 

Hence,                                                     
         

   
 

   

 
 

 

 
. 

But       1 if     and        1 if    . 
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Example 2.  Verify the hypothesis and the conclusion of the Mean 

Value Theorem for the following functions: 

 (i).      log   in  1    

(ii).               in       

(iii).      
 

   
 in 2      

(i) The function      log   is continuous in  1    and it has 

a derivative       
 

 
 in  1    and        1  log  . So 

the Mean Value Theorem implies log      1 
 

 
 for a 

suitable   in  1   . 

(ii) Being a polynomial,          is continuous in       

and derivable in      . 

                                       and 

      2    . 

The Mean Value Theorem implies the existence of   in 

      such that  

 

                 2           . 

Since    , we get          2    . 

 Since    , we get from the above   
   

 
 which is in the 

open interval      . 

(iii)      
 

   
 is continuous in  2    and differentiable in 

 2   , 

       2   
 

 
         

 

      
 . 

Hence, the existence of   in the Mean Theorem implies  

 
 

 
  

 

      
  and hence    1    . 

Solving    1     for  , we get   1    . 

 Clearly,   1     lies in  2   , while 1     does not 

belong to  2   . Hence   1    . 

 The Mean Value Theorem can be expressed in the 

following alternative form. 

Theorem 2.  If a function      is continuous in the closed interval 

        and differentiable in the open interval         then there 

exists at least one number   between   and 1 such that        

              . 
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Proof.   Let us take       in the Mean Value Theorem. Then 

     is equal to   or   according as     or   1. Here if 

    1,      is some point in      . So   can be taken as      

in the statement of the Mean Value Theorem. Hence, we obtain 

                     . 

Example 3.  Determine   that appears in the Mean Value Theorem 

given above for the function  

        2    for    
 

 
 and   

 

 
 . 

Now                   
 

 
 and            

 

 
 

 

 
 1 . 

Hence, the Mean Value Theorem given above yields, 

 
 

 
 

 

 
 

 

 
 1 or  

 

 
 . 

 The following theorems are the very important consequences 

of the Mean Value Theorem. 

Theorem 3.  If   is a real valued function defined on closed interval 

     , such that         for all   in the open interval      , then 

     must be a constant in the open interval      . 

Proof.  Let    and    be any two points in       with      ,   

satisfies all the conditions of the Mean Value Theorem in the        . 

Hence, by the Mean Value Theorem, there exists a point   in the open 

interval         such that  

      
           

     
. 

But         by hypothesis. Therefore,               for all 

      in the open interval      . Thus             for any two 

different points    and    of      . In other words,   is constant on 

     . 

Theorem 4.  Let   and g be any two real valued differentiable 

functions on       such that       g'    for all   in      . Then 

     g      which is constant in      . 
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Proof. Let           g   . Then                     for all 

  in      . Therefore, by the previous theorem       . 

Theorem 5.  If   is a continuous real valued function on   and if 

        for all   in   except possibly at the end points of  , then   is 

strictly increasing on   and hence   is one-to-one. 

Proof.  Let us suppose         with      . Then   is continuous 

on          and is differentiable  in         . Then by the Mean Value 

Theorem, there is a point   in          such that  

      
           

     
. 

 Since          and         by hypothesis, it follows that 

              . That is,              . Hence,   is strictly 

increasing on      . So   is one-to-one. 

 A similar result holds good when         on   and we can 

state the result without proof as follows, since the proof runs parallel 

to the above theorem. 

 If   is differentiable on   and         for every      except 

possibly at the end points of  , then   is monotonic decreasing on  . 

Example 4.  Find the intervals in which the polynomial 2   1    

    1 is increasing or decreasing. 

Let us take              2   1        1. 

Hence,                                    2      .         

Now                          for   2 and     . 

Further                      for 2      

and                               for   2 and    . 

Thus       is positive in     2  and       and negative in  2   . 

Hence,   is monotonically increasing in the intervals     2 ,       

and monotonically decreasing in  2   . 

Theorem 6.  If    exists and is bounded on some interval  , then   is 

uniformly continuous on  . 

Proof.  Since    is bounded in the  , there exists a      such that 

          for all    . Let          with      . Then by 
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applying the Mean Value Theorem to   in        , there exists 

          such that       
           

     
. 

 Consequently we get from the above hypothesis  

 
           

     
   . 

Hence, we obtain from the above inequality               

        . Since    and    are arbitrary points of  , it follows that 

                       for all        . 

To show that   is uniformly continuous on  , let     be given. Then 

we can choose a   
 

 
 . Hence, if         with          , we get 

                           , the same   serving for all 

points in  . Hence,   is uniformly continuous on  . 

Example 5.  Prove that the following functions are uniformly 

continuous: 

(i)      
 

   
 in    2 . 

(ii)            in   1 1 . 

(i) For the function   in    2 ,    exists and         
 

 
 which implies 

that    is bounded in    2 . So by the above theorem   is uniformly 

continuous in    2 . 

(ii) For the function  in   1 1 ,    exists and           which 

implies that    is bounded in   1 1 . So by the above theorem   is 

uniformly continuous in   1 1 . 

 Now we shall give below a generalization of the Mean Value 

Theorem known as Cauchy’s Mean Value Theorem. 

Theorem 7.  Let   and g be continuous functions on the closed and 

bounded interval       with g    g   . If both   and g are 

differentiable at each point of the open interval       and       and 

g     are not both equal to zero for any        , then there exists a 

point   in the open interval      , such that  

     

     
 

         

         
 . 

Proof.  Let us consider the function      defined as follows: 
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           . 

Then        and       . Using the hypothesis,      is 

continuous in the closed interval       and differentiable in the open 

interval      . So   satisfies all the hypotheses of the Rolle’s theorem. 

Hence, there exists a point         such that        . That is  

      
         

         
 g'     . 

If g'    were zero, then       would be zero, contradicting the 

hypothesis. Hence g       so that we have  

     

     
 

         

         
 . 

Note 1. By taking g      in the above theorem, we obtain the 

Lagrange’s Mean Value Theorem as given in Theorem 1. 

 The generalized  Mean Value Theorem proved above can be 

given in a slightly different form as follows. 

Theorem 8.  If   and g are each continuous on the closed interval 

      and differentiable on the open interval      , then there exists 

a   in the open interval       such that  

       g    g      g               . 

Proof.  Let           g    g     g               . Then   is 

continuous on the closed interval       and differentiable on the 

open interval      . Further, we can check easily that          . 

Hence  by Rolle’s theorem  there is a point   in the open interval 

      with        . But            [g    g   ] g          

     . Hence  

     [g    g   ] g                

If g     g    and g       and         for all        , we can 

write the above expression in the form 

         

         
 

     

     
 . 

Example 6.  Find the value of   in the generalized Mean Value 

Theorem for the following pairs of functions: 

 (i)          , g    2  1 in  1   . 

 

Power Series 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

 (ii)       sin  , g    cos   in   
 

 
   . 

(i)           1, g    g      

and                          
 

   
, g     2. 

Hence,                  
         

         
 

     

     
 gives  

 

 
 

 

   
 . 

Hence, we get   
 

 
. Since 

 

 
  1   , we get   

 

 
 . 

(ii) the given functions satisfy all the conditions of the generalized 

Mean Value Theorem. Hence, we shall find the value of   as follows: 

          1 and  g     g    1. 

Also 
     

     
  cos  . Using these we get, from 

         

         
 

     

     
 , cot    1. 

The solution of this equation in   
 

 
    is 

 

 
 . so   should be equal to 

 
 

 
 . 

8.4 TAYLOR’S THEOREM AND TAYLOR 
SERIES 

 Taylor’s theorem is an e tension of the Mean Value Theorem 

of differential calculus. To obtain the Taylor series, we have to 

consider the limit of the remainder after   terms in the Taylor’s 

theorem. Though the different forms of the remainders can be 

obtained from the generalized law of mean, we derive them in the 

integral form, since the integral forms are easy to derive and handle. 

    First we shall give a brief motivation leading to the definition of 

Taylor series. Suppose for all   in some interval  , the function   can 

be expressed in the form  

                                               (1)           

where    . Then we say that   is expanded in powers of       . 

Since the series on the right side of  (1) expresses  , the question 

naturally arises whether the series on the right side of (1) converges 

to  . Also if it converges to  , let us find whether we can express 

             in terms of the properties of the function  . Assuming 

that (1)  can be differentiated  term by term  with respect to    

successively on both sides, we get  
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(i)          2                                                                                         

 (ii)            2   2.           .                                                                       

and after nth differentiation, we get 

                  1     2              2    

1                   (iii) 

If the substitution     on both sides (i), (ii), and (iii) are permitted, 

then we get  

                    2                         

Using the above relations, (1) can be written as      
     

  
   

   
      

  
         

       

  
                                  (2) 

(2) is called the Taylor series of the function about    . When 

   , we get from (2) the following expansion  

          
     

  
   

      

  
     

       

  
                        (3) 

The expansion (3) of at     is called the Maclaurin series for  . 

Note. For the expansion of   at    ,           must exist for all 

  1 2    . The series may not converge for any   except    . 

      For investigating the Taylor series, first we shall consider the 

partial sum of Taylor series with remainder which tends to zero for 

large values of   yielding Taylor series. So we shall establish the 

following theorem known as Taylor’s formula. 

Theorem 1.  Taylor’s Formula .   Let   be a real valued function on 

        such that           exists for every           and   

            is continuous on        . Then we have  

                            
     

  
      

      

  
         

       

  
               for                

where            
 

  
        

 

 
           . 

Proof.   First we shall establish that  

if             
 

  
        

 

 
           , then  
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       for              ,   1 2                  

To see this, we have by integration by parts  

                 
 

  
        

 

 
                  

                          

  
      

  
        

   
   

  
 

      
            

 

 
           

                             
      

  
             . 

It follows that  

              
      

  
                              (1) 

Using  1   we shall establish Taylor’s formula. 

From the definition of       , we get  

                  
 

 

           

Further from (1), we get  

            
     

  
     ; 

            
      

  
      . 

Proceeding in this manner, we get  

              
       

  
       . 

Adding all the above equations, we obtain  

                    
     

  
      

      

  
         

       

  
      . 

From the above we get 

             
     

  
      

      

  
         

       

  
   

            

which completes the proof of the theorem. 
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Note. The Taylor series of   around     need not converge in 

general to      at any point   in the neighbourhood of    . For 

example consider the function              if     and        if 

   . We shall show in the next section that   has derivatives of all 

orders at every point in the neighbourhood of     and for all  , 

         . The Taylor series around 0 is given by  

                                  
     

  
   

      

  
     

       

  
      

This series has sum zero. But the sum of the Taylor series at any 

other  point in the neighbourhood of      is different from zero. 

Thus the series of the function does not converge to      for any 

point in the neighbourhood of      except at    . 

     The following theorem gives the condition under which the Taylor 

series of   converges to     . 

Theorem 2.   The  Taylor series of   converges to      at     if and 

only if          as    . 

Proof. From the Taylor’s formula  we get  

           

          
     

  
      

      

  
         

        

      
          

                   (1)       

where         is the remainder after   terms. 

Let 

            
     

  
      

      

  
         

        

      
                                       

(2)   

From (1) and (2), we get                  .  The Taylor series 

converges to     , then            as    . This implies and is 

implied by lim          , when  

                                     . 

Note. Further the function in the note under theorem 1 cannot be 

represented by Taylor series about the origin. By Taylor’s theorem  

the expansion of the function about the origin,  
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where         
 

 

  . Now       does not tend to zero as    . 

Hence,   
 

 

    cannot be represented by Taylor series. 

Since the convergence of the Taylor series depends upon the limit of 

the remainder term         as    , we shall put the remainder 

term in two different convenient forms due to Lagrange and Cauchy. 

Theorem 3.   Taylor’s formula with Lagrange’s form of the 

remainder) 

Let   be a real valued function on         such that         exists 

for every           and       is continuous on         . Then if  

         , there exists a number   with       such that  

               
     

  
      

      

  
         

       

  
   

    
         

      
        .   

The same result is true if    . In that case,           is replaced by 

        . 

Proof. We shall apply the Second Mean Value Theorem of integral 

calculus in the integral form of remainder. Then  

                   
 

  
                   

 

 
                            

                              
         

  
      

 

 

 
     

         

  
 
        

     
 

for some        . Then we get from the above  

                                      
         

      
           

which completes the proof. 

Corollary 1. Let      , then       ,  where     1. Hence 

making these substitutions in the theorem, we get  

            
     

1 
  

      

2 
     

       

  
  

 
            

   1  
     

Corollary 2.  Maclaurin’s Theorem with Lagrange’s Form of 

Remainder ). 
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    .   

Proof. Taking     and      in Corollary 1 we obtain Maclaurin’s  

theorem with Lagrange’s form of remainder in      . 

Theorem 4.  Taylor’s Formula with Cauchy Form of Remainder ). 

Let   be a real valued function on         such that            

exists for every            and           is continuous on 

       . Then if             there exists a number   with 

      such that  

          
     

  
      

      

  
         

       

  
        

               

      
           . 

The same result is true for     and          is replaced by 

       . 

Proof. Applying the second Mean Value Theorem of integral calculus 

taking the integrand as a whole, we get  

        
1

  
                   

 

 

 
               

  
   

 

 

  

for some          , Thus we have  

        
               

  
.       

which completes the proof. 

Corollary 1. Let      . Then        for some     1. 

Hence , there exists   with      1 , such that  

       

     
     

  
  

      

  
     

       

  
   

            

      
 1         . 

Corollary 2.  Maclaurin’s  Theorem with Cauchy Form of 

Remainder). 

                   
     

  
  

      

  
     

       

  
   

          

      
 1  

       .   
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Proof. Taking      and      in Corollary 1  we get  Maclaurin’s  

theorem with Cauchy’s form of remainder in      . 

Example: Write down Taylor formula with Lagrange form of 

Remainder for       log 1      about   2 and    . 

   The Taylor’s theorem about   2 for     is  

       2  
   2 

1 
   2  

    2 

2 
   2   

     2 

  
   2  

 
     2 

  
   2   

       

  
   2   

       log 1    ,                       
 

     
,                                 

 
 

      
 

        
 

      
  ,                                

 

      
 ,                        

  

      
 . 

Hence the required expansion,  

     log    
1

 
 .
   2 

1 
 

1

 
.
   2  

2 
  

2

2 
.
   2  

  

 
 

 1
.
   2  

  
 

1

  
.

2 

 1     
   2   

where   is between 2 and   in   1   . 

8.5 POWER SERIES EXPANTION 

Introduction 

The terms of the series which we have examined so far (with the 

exception of those considered in the chapter on Uniform Convergence) 

were for the most part, determinate numbers. In such cases the series may 

be characterized at having constant terms. This, however, was not 

everywhere the case. In the geometric series   , for instance, the terms 

only become determinate when the value of   is assigned. Our 

investigation of the behavior of this series  did not terminate with the 

mere statement of the convergence or divergence, the result was: thee 

series converges if     1,  but diverges if     1. The solution thus 

depends, as do the terms of the series, on the value of a quantity left 

undetermined a variable. In this chapter we propose only to consider, in 

detail within  the  scope of the present work,  series whose generic term 

has the form     , i.e., we shall consider series of the form  
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Such series are called power series (in x) and the numbers   (dependent 

on   but not on  ) their coefficients. 

Definition.  

For    , obviously every power series is convergent whatever be the 

value of the coefficients. The most important fact about a power series is 

that either: 

i. it converges for no value of   other than the self-evident 

point    , we then say that it is nowhere convergent, e.g., 

      converges for no value of   other than    , 

or 

ii. it converges for all values of  , and is then called 

everywhere convergent, 

e.g.,                      
  

  
       1    

  
     

or  

iii. (the general case) it converges for some values of   and 

diverges for others the totality of points   for which it converges 

is called its region of convergence. 

Thus, if       is a power series which does not converge everywhere 

or nowhere, then a definite positive number   exists such that       

converges (indeed absolutely) for every       but diverges for every 

     . The number  , which is associated with every power series, is 

called the radius of convergence and the interval,       ,  the interval 

of convergence, of the given power series. 

The behavior of a power series at      , depends entirely upon the 

character of the sequence      of its coefficients. For instance, both the 

series  

 
  

  
   

  

 
  

converge when     1 and diverge when     1. When     1, the 

first series converges while the second diverges at   1, and converges 

at     1. 

Properties of functions expressible as Power Series 
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In the section, we shall derive some properties of the functions which can 

be expressed in terms of power series,  .  ., the functions of the form 

           
   , or                

   , 

the former being the power series expansion of      about the origin, 

while the latter is about    . This can, however, be thought of in the 

reverse direction also. In the interval of convergence, the power series 

      or           has a definite sum      for each  , and usually 

different sum for a different  . In order to express this dependence on  , 

we write 

          , or               , 

     is then called the sum function of the series. 

 Before proceeding to the next theorem, let us understand an 

important distinction between the intervals of absolute and of uniform 

convergence. An interval of uniform convergence must include its end 

points but the interval of absolute convergence need not. 

 Thus, if a power series converges absolute and uniformly for 

     , we express this fact by saying that it converges absolutely in 

      , and uniformly in           , no matter which     is 

chosen; the latter interval may be replaced by              . 

Theorem 4.  If a power series       converges for      , and let us 

define a function  

          ,      , 

then       converges uniformly on           , no matter which 

    is chosen, and that the function   is continuous and differentiable 

on        , and  

              ,       

Let     be any number given. 

For        , we have 

                 . 

 But since          , converges absolutely (every power 

series converges absolutely within its interval of convergence), 

therefore by Weierstrass’s  -test, the series       converges 

uniformly on           . 
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 Again, since very term of the series        is continuous and 

differentiable on       , and       is uniformly convergent on 

          , therefore its sum function   is also continuous and 

differentiable on       . 

 Also,                
                         

                        1    

 Hence, the differentiated series          is also a power 

series and has the same radius of convergence   as       . 

Therefore,          is uniformly convergent in            . 

 Hence,               ,     . 

 Corollary.  Under the hypothesis of the above theorem,   has 

derivatives of all orders in      , which are given by 

             1 

 

   

      1        

and in particular, 

            ,     1 2   

 [Here, as usual,      denotes the  th derivative of   for 

  1 2      and      means  .] 

Let                
              

By the above theorem,      is differentiable any number of 

times. Let us differentiate   times. 

              2        
                 

            2.1     .2   
   .    

         1           

                 . .2            1    2           

                        1    2                

           . 

           . 

                 1     1   2.               

1       1           

                       1  
         1        
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Also  

             

the other terms vanishing at    . 

 Now, it appears natural to pose the question whether the 

converse assertion is true. The problem can be stated follows. 

 Suppose a function      is infinitely differentiable on an 

interval       ,    . We can formally construct the Taylor’s 

series for this function: 

                    
     

  
  

      

  
      

       

  
     

Now does this series converge on the interval       , and will its 

sum be equal to the function   in case it exists? It turns out that in 

general the answer to the question is negative which can be 

confirmed by the example of the function 

                                   
 

 

              
               

  

In fact it can be easily verified  that the function is infinitely 

differentiable through the x-axis and that at the origin , we have 

                                            

Consequently  all the coefficients of the Taylor’s series of the function 

are equal to zero. Thus the Taylor’s series converges on the entire  -

axis and its sum is identically equal to zero, whereas the function 

takes on a zero value only at the origin and so we fail to express   as 

a power series. 

Abel’s Theorem  

In this section we shall prove that for a power series which has a 

given radius of convergence and convergent at an  end-point of the 

interval, the interval of uniform convergence extends up to and 

includes that end-point. Moreover, in that case the sum function   is 

continuous  not only in       , but  also at the end point. This is 

proved in Abel’s Theorem  

Theorem. Abel’s Theorem  First form . 
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If a power series       
  

     converges at the end point     of the 

interval of convergence       , then it is uniformly convergent in 

the closed interval      .       

                 we shall show that under the assumptions of the  theorem, 

Cauchy’s criterion for uniform convergence is satisfied on the closed 

interval      .  This will imply the uniform convergence of the series 

on      .   

Let              
          

            
         1 2         

Then obviously                    
          

                                                  
               

                                         

                                           
                

Let     be given. 

Since the number       
  

    is convergent    therefore by Cauchy’s 

General Principle of convergence, there exists an integer    such that 

for    , 

                                                , for all   1 2                       (2) 

Taking into account that  

 
 

 
 

   

  
 

 
 

     

    
 

 
 

   

 1,   for       

and using equations (1) and (2), we have for     
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  . 

for all       1 and for all        . 

   Hence by Cauchy’s criterion   the series converges uniformly on 

     . 

Theorem .  Abel’s  Theorem  Second form . 

 If          be a power series  with finite radius of convergence  , 

and let  

                                   ,        

If  the series         converges, then   

                             lim                   

Let us first show that there is no loss of generality in taking   1. 

Put      , so that  

                                       ,   where          . 

It is a power series with radius of convergence   , where  

                      
 

                     1 

Thus, it will suffice to prove the following: 

Let         
  be a power series with unit radius of convergence and 

let  

            
 ,   1    1 

If the series       converges, then  

lim
     

         

 

 

 

Let                  ,      , and let        
   , then  
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           1             

    

     . 

For     1, when    ,  since       , and      ,  we get  

                           1           
   , for     1                       (1)                    

Again,      , for     , there exists   such that  

                                      
 

 
, for all                                               (2) 

Also                         1           
   1,       1                                 (3) 

Hence, for      ,  we have ,  for       1, 

                        1           
                            [using (1)] 

                                     1         
 
                         [using (3)]       

        1          
 
         

 

 
  1         

             [using (2)] 

                                     1          
 
         

 

 
  

But for a fixed  ,   1          
 
         is a positive function of  , 

having zero value at   1. Therefore, there exists      , such that 

for 1      1,  

 1          
 
         

 

 
 . 

             
 

 
 

 

 
  , when  1      1. 

Hence,   lim               
 
   . 

Corollary.  If the series    1       converges, then  

                                  lim               1      . 

Putting     , and      1      , we have  

             

lim           lim              

lim         1             

                                                              . 
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Check your progress 
1) State Roll’s Theorem 
2) State Darboux Property 
3) State mean value theorem for derivatives 
4) If   and g be any two real valued differentiable functions on 

      such that       g'    for all   in      . Then? 
     g      which is constant in      . 

 

8.6 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1) If   is continuous real-valued function defined on a bounded 

and closed interval       with             and differentiable at 

every point   in the open interval       such that        . 

2) If   has derivative at every point of the closed interval      , then    

takes on every value between       and      . 

3) If   is a continuous function on the closed and bounded 

interval       and if       exists for all   in the open interval       

such that       
         

   
 

4) Let   and g be any two real valued differentiable functions on 

      such that       g'    for all   in      . Then      g      

which is constant in      . 

8.7  SUMMARY 

  Rolle’s theorem  If   is continuous real-valued 

function defined on a bounded and closed interval       with 

            and differentiable at every point   in the open 

interval       such that        . 

 (Darboux Property) If   has derivative at every point of the 

closed interval      , then    takes on every value between       and      . 

 (Mean value theorem for derivatives) If   is a 

continuous function on the closed and bounded interval       and if 

      exists for all   in the open interval       such that       
         

   
 

 If   is a real valued function defined on closed interval      , 

such that         for all   in the open interval      , then      

must be a constant in the open interval      . 
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 If   and g are each continuous on the closed interval 

      and differentiable on the open interval      , then 

there exists a   in the open interval       such that  

       g    g      g               . 

  Taylor’s Formula    Let   be a real valued function on 

        such that           exists for every           

and               is continuous on        . Then we have  

             
     

  
      

      

  
         

       

  
   

            for                

where            
 

  
        

 

 
           . 

The  Taylor series of   converges to      at     if and only 

if          as    . 

  Taylor’s formula with Lagrange’s form of the 

remainder) 

Let   be a real valued function on         such that         

exists for every           and       is continuous on  

       . Then if           , there exists a number   with 

      such that  

               
     

  
      

      

  
         

       

  
       

         

      
        .   

The same result is true if    . In that case,           is 

replaced by         . 

  Taylor’s Formula with Cauchy Form of Remainder  . 

Let   be a real valued function on         such that  

          exists for every            and           is 

continuous on        . Then if             there exists a 

number   with       such that  

          
     

  
      

      

  
         

       

  
        

               

      
           . 

The same result is true for     and          is 

replaced by        . 

 Abel’s Theorem  First form . 

If a power series       
  

     converges at the end point 

    of the interval of convergence       , then it is 

uniformly convergent in the closed interval      . 

 Abel’s  Theorem  Second form . 

 If          be a power series  with finite radius of 

convergence  , and let  

                                   ,        
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If  the series         converges, then   

                             lim                  . 

8.8 KEYWORDS 

  Rolle’s theorem  If   is continuous real-valued 

function defined on a bounded and closed interval       with 

            and differentiable at every point   in the open 

interval       such that        . 

 (Darboux Property) If   has derivative at every point of the 

closed interval      , then    takes on every value between       and      . 

 (Mean value theorem for derivatives) If   is a 

continuous function on the closed and bounded interval       and if 

      exists for all   in the open interval       such that       
         

   
 

8.9 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1) Give the geometrical interpretation of the mean value 

theorem. 

2) Show that the real valued function         2 defined on 

 1    is strictly increasing. 

3) Show that 
 

 
log 1     decreases as   increases from   to  . 

4) Show that        2    is monotonically increasing in 

every interval. 
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BLOCK III 
INTEGRAL FUNCTIONS AND CONTRACTION 

MAPPING THEOREM 
 

UNIT IX RIEMANN INTEGRATION 
Structure 

9.0 Introduction  

9.1 Objectives  

9.2 Definition of the Riemann Integral  

9.3 Daurbo ’s theorem 

9.4 Conditions for Integrability 

9.5 Integrability of Continuous & Monotonic Functions 

9.6 Answers to Check Your Progress Questions 

9.7 Summary 

9.8 Keywords 

9.9 Self Assessment Questions and Exercises 

9.10 Further Readings 

9.0 INTRODUCTION 

The Riemann integration is a basic concept in mathematical 

analysis, since it relates to boundedness, continuity and 

differentiability. In this chapter, we shall give a detailed and rigorous 

account of Riemann integration, proving the basic property of 

integration as anti-derivative which comes out as the fundamental 

theorem of calculus. In this chapter, we shall consider only the real 

valued function. 

9.1 OBJECTIVES 

 

After going through this unit, you will be able to: 

  Understand what is meant by Riemann Integral 

  Discuss Daurbo ’s theorem 

  Discuss the Conditions for Integrability 
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9.2 DEFINITION OF THE RIEMANN 
INTERGRAL 

 
 Definition 1. Let   be a bounded and closed interval of  . Let   be a 

bounded real valued function defined on  . Let us define the 

following  

        lub                   glb       . 

Definition 2.  A partition   of       is a finite subset                 

of       such that                         . 

The points               are called the points of sub-division  of 

     . The closed interval  

                                        

are called the component intervals of      . For the partition  , we 

have in the above notation  

         lub
   

                glb
   

     

where   1 2      .  

              From the definition of partition we have  

                                   for each  . 

Definition 3. Let   be a bounded function on the closed bounded 

interval       and let   be any partition of      . We define the upper 

sum of   corresponding to the partition   as  

                      
   . 

Similarly, the lower sum of   is defined as  

                      
   . 

Since                     always, we have  

              .                                     1  

Note. Geometrically,         is the sum of the areas of circumscribed 

rectangles and         is the sum of the  areas of inscribed rectangles 

of the curve        corresponding to the partition  , if   is a 

continuous and non-negative function on      . 
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From the definition of partition, we have the following property. 

9.3 DAURBBOUX’S THEOREM 

Theorem 1.  For any partition   of      , we have  

                                                       . 

Proof. For each   1 2      , we have  

                                                     . 

Hence        for the partition  , we get  

   

 

   

 

       

 

a b 

       

   

 

   

 

       

 

a b 
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   . 

From this we get  

                                               . 

From the above inequalities, we conclude that the set of all lower 

sums        is bounded above for every   and an upper bound for 

the lower sums is the real number            . Similarly,        

is bounded below for every   and a lower  bound is the real number  

           . 

Definition 4. Let   be a bounded function on the closed and bounded 

interval      . The upper integral of   over       is defined as  

                                                glb       
  

 
                                  2  

where glb is taken over all possible partitions   of      . Similarly 

the lower integral of   over       is defined as 

                                                  lub       
 

  
                                    

where lub is taken over all  partitions   of      . 

For simplicity the upper and lower integrals of   in       are denoted 

by   
  

 
 and   

 

  
. 

            Since the set of all lower sums        for all possible partitions 

is bounded above by Theorem 1, the lower integral exists. Similarly, 

the set of all upper sums        is bounded below for every 

partition, the upper integral exists. Further from the inequality  1 , 

we have                
 

  
   

  

 
.                                          

Definition 5. If   is a bounded function on the closed and bounded 

interval      ,   is said to be Riemann integrable on       provided 

                                               
 

  
   

  

 
.                                                                                

      The common value of the upper and lower integrals is denoted by  

  
 

 
 or        

 

 
 and called the Riemann integral of   with respect 

to   in      . 

Example 1. Each constant function        is Riemann integrable on 

any interval      . 
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           Let                                  be a 

partition  of       . Then  

                                      

                                      

Since   is arbitrary, it follows that                        for 

every partition   of       and   
  

 
        and   

 

  
        

are equal. 

Thus   is Riemann integrable and    
 

 
       . 

Example 2. Let               1 . Let   be the partition 

   
 

 
 
 

 
 
 

 
 1  of    1 . Compute        and       . 

For the given partition  , the component intervals of    1  are  

      
1

 
      

1

 
 
2

 
      

2

 
 
 

 
       

 

 
 1    

        
1

 
         

2

 
          

 

 
         1 

                  
1

 
          

2

 
         

 

 
 

Hence, let us find         and       .  

Now,                         
          

                                    
 

 
 .

 

 
  

 

 
  .

 

 
 

 

 
 .

 

 
 1 .

 

 
 

  
1

1 
  

2

1 
  

 

1 
  

 

1 
   

1 

1 
  

 

 
 

                

 

   

     

 
1

 
 .  

1

 
 .
1

 
 

2

 
 .
1

 
 

 

 
.
1

 
 

                                                             
 

  
  

 

  
  

 

  
  

 

  
 

 

 
 

Hence, we get       
 

 
         

 

 
 . 
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Example 3. Let        . For each    , let    be the partition 

   
 

 
 

 

 
   

 

 
   of    1 . Compute lim            and 

lim           .  

  Now the component intervals of the partition   are,  

      
1

 
      

1

 
 
2

 
      

2

 
 
 

 
           

  1

 
 
 

 
   

        
1

  
          

2

 
               

 

 
     

         
 

 
                

 

 
    

                   
1

 
               

2

 
     

         
 

 
                

  1

 
    

Hence,                    
 

   .
 

 
  

 

 
     .

 

 
  

 

 
    .

 

 
      

 

 
   .

 

 
 

                                           
 

   1   2            . 

                   
 

   
            

 
  and hence, lim           

 

 
 . 

         .
1

 
  

1

 
   .

1

 
   

2

 
   .

1

 
   

 

 
   .

1

 
    

  1

 
   .

1

 
  

                                         
 

  
 1   2            1    

                  
 

  
 
            

 
   and hence ,  lim           

 

 
. 

The partition     of       is called a refinement of  , if each point of 

subdivision    of    is also a point of subdivision of     . The 

partition     is called the common refinement of the partitions    

and   , if    is the refinement of both    and   . Every pair of 

partitions    and    has common refinement.  For example 

         consisting of the points of     and     is a common 

refinement of both      and   . The length  of the largest of the 

component intervals of the partition is denoted by      . That is  

      ma               . Using these we have the following 

theorem. 
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Theorem 2. Let   be bounded function on      . Then every upper 

sum for   is greater than or equal to every lower sum for  . That is, if 

   and    are any two partitions of      , then                 . 

Proof. To prove this, first we shall establish that if   
  is any 

refinement of     and   
  is a refinement of    , then  

                                  
       and                

   .               1  

That is, any refinement of the given partition decreases the upper 

sum and increases the lower sum.  It is enough if we prove the case 

where   
  is obtained from     by adding only one  point of 

subdivisions. We suppose that   has component intervals 

                    and   
  has component intervals.  

            
     

        where      
    

   and         
      

   . 

since    
     , we have       

           and       
    

       . 

Hence we have,  

      
            .            

  .    
         

   .    
    

 

       

 

                               .             .     
      

      
        

                             . 

Hence, we have         
           . 

In a similar manner , we can show that                 
  .  

Now since       is a refinement of both    and   , we have from 

the above  

                                                          . 

Note. From the theorem, we get                         

where     and     are both taken over all partitions of      . 

                   For, if    is any partition of      , then from the theorem, 

        is the lower bound for the set of all upper sums        . 

Hence we get                      for every partition   . But 

          , is the upper bound for the set of all lower sums        . 

Hence, we get  
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                                                       . 

Using the above inequality, we get immediately from the definition 

of upper and lower integrals  

                                                          
 

  
        

  

 
. 

9.4 CONDITIONS FOR INTEGRABILITY 

Theorem 3. Let   be a bounded function on the closed bounded 

interval      .   Then   is Riemann integrable if and only if for every 

   , there exists a subdivision   of       such that  

               . 

Proof.  First suppose that for the given      , there exists a 

partition   such that  1  is true.  Then since  

       
  

 
        and        

 

  
       . 

Hence, using these two in  1 , we get        
  

 
          

 

  
. 

Since     is arbitrary, we get from the above 

       
  

 

        
 

  

 

From the previous note, we get        
 

  
        

  

 
. 

Hence we have from  2  and    ,         
 

  
        

  

 
, so that 

  is Riemann integrable in      . 

Conversely, suppose    is Riemann  integrable  in      . 

Then          glb          lub         
  

 
  

 

  
 

Given    , from the definition of glb, we can choose a partition    

such that  

                                                             
  

 
 

 

 
 . 

In the same manner, we can choose a partition    such that  

                                                             
 

  
 

 

 
 . 
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Using the fact that   is Riemann integrable, we get  

        
 

 
          

 

 
  . 

Now, considering the common partition of     and     

           
 

 
             

 

 
 . 

Now, considering       as single partition  , we get  

               . 

This completes the proof of the theorem. 

                         The following theorems illustrate the use of the above 

criterion of integrability for a bounded function in a closed and 

bounded interval. 

9.5 INTEGRABILITY OF CONTINUOUS & 
MONOTONIC FUNCTIONS 

Theorem 4. Every continuous function on       is Riemann 

integrable. 

Proof. Suppose   is continuous on       and let     be given. We 

shall show that corresponding to this    , there exists a partition   

for       such that 

               . 

By the uniform continuity of    on      , there is a     such that  

            
 

   
, whenever              with        . 

Let   be any partition of       with        . By the property of 

continuous function on the closed interval          , there exists 

points   
  and   

              such that  

    
       and    

       . 

Now,    
    

                          . 

Hence,             
       

     
 

   
 for   1 2    . 

Hence ,                                       
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        . 

Hence,   is Riemann integrable on      . 

Theorem 5.  If   is monotone on      , then it is Riemann- integrable  

on      . 

Proof. If   is constant on      , then it is Riemann integrable on        

by Example 1. 

        Since we can give a similar proof for monotonic decreasing case, 

we assume that   is monotonic increasing on       and          . 

Let     be given. We shall show that there exists a partition   on 

      for which                . Let   be any partition on       

with        
 

         
. Then since   is increasing on      , we have  

              and                  for   1 2    . 

Hence,                                                   
   

 
    

                                                                                 
     

                                                                               
      

                                                          
 

         
                

 
    

                                                          
 

         
               . 

Hence, by Theorem 3,    is Riemann integrable on      . 

Check your progress 
1) Define Riemann integrable 
2) Provide the conditions for integrability 
3) What is the integrability of continuous function? 
4) What is the integrability of the monotone function? 
 

9.6 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1) If   is a bounded function on the closed and bounded 

interval      ,   is said to be Riemann integrable on       provided 

                                               
 

  
   

  

 
.                                                                                
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      The common value of the upper and lower integrals is denoted by  

  
 

 
 or        

 

 
 and called the Riemann integral of   with respect to 

  in      . 

2) Let   be a bounded function on the closed bounded interval 

     .   Then   is Riemann integrable if and only if for every    , 

there exists a subdivision   of       such that  

               . 

3) Every continuous function on       is Riemann integrable. 

4) If   is monotone on      , then it is Riemann- integrable  on 

     . 

9.7 SUMMARY 
 Let   be a bounded and closed interval of  . Let   be a 

bounded real valued function defined on  . Let us define the 
following  

                                        . 
 A partition   of       is a finite subset                 of 

      such that                         . 
 The points               are called the points of sub-

division  of      . The closed interval  
                                        

 are called the component intervals of      . For the partition 
 , we have in the above notation  

         lub
   

                glb
   

     

where   1 2      .  
               From the definition of partition we have  

                                   for each  . 
 Let   be a bounded function on the closed bounded interval 

      and let   be any partition of      . We define the upper 
sum of   corresponding to the partition   as  

                      
   . 

 Similarly, the lower sum of   is defined as  
                      

   . 

               .               
 Let   be a bounded function on the closed and bounded 

interval      . The upper integral of   over       is defined as  

         glb       
  

 
                                  2  

where glb is taken over all possible partitions   of      . 
Similarly the lower integral of   over       is defined as 

         lub       
 

  
                                    

where lub is taken over all  partitions   of      . 
 If   is a bounded function on the closed and bounded 
interval      ,   is said to be Riemann integrable on       
provided 

                                               
 

  
   

  

 
.                                                                                
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      The common value of the upper and lower integrals is denoted by  

  
 

 
 or        

 

 
 and called the Riemann integral of   with respect 

to   in      . 
 Let   be a bounded function on the closed bounded 

interval      .   Then   is Riemann integrable if and only if for every 
   , there exists a subdivision   of       such that  

               . 
 Every continuous function on       is Riemann 

integrable. 
 If   is monotone on      , then it is Riemann- integrable  

on      . 

9.8 KEYWORDS 
 If   is a bounded function on the closed and bounded 
interval      ,   is said to be Riemann integrable on       provided 

                                               
 

  
   

  

 
.                                                                                

      The common value of the upper and lower integrals is denoted by  

  
 

 
 or        

 

 
 and called the Riemann integral of   with respect 

to   in      . 

9.9 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1)Find whether   is Riemann integrable on    1  and justify your 
answers. 

  i)      
 

   
   

  ii)         
 

 
    

   iii)          

2) If   is continuous on    1 , prove that lim      
 

 
    

 

 
 
   . 
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UNIT 10 INTEGRAL FUNCTIONS 
Structure 

10.0 Introduction  

10.1 Objectives  

10.2 Existence of Riemann Integral 

10.3 Properties of the Riemann Integral 

10.4 Continuity & Derivability of integral functions 

10.5 The Fundamental Theorem of Calculus 

10.6 Answer to Check your Progress  

10.7 Summary 

10.8 Keywords 

10.9 Self Assessment Questions and Exercises 

10.10 Further Readings 

10.0 INTRODUCTION 
All the different conditions we have stated in the previous 

discussion for Riemann integrability of bounded functions on a bounded 

and closed interval       are only sufficient. In this section, we shall first 

explain how the concept of continuity is related to the Reimann-

integrability and characteristic the Reimann integrable functions by using 

functions continuous almost everywhere. For such a characterization, we 

shall first introduce the concept of a set of measure zero. If   is an interval 

of real numbers, let     denote the length of the interval. 

10.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Discuss existence of Riemann integral  

 Discuss properties of the Riemann Integral 

 Discuss the Continuity & Derivability of integral functions 

10.2 EXISTENCE OF RIEMANN INTEGRAL 
Defenition 1. A subset   of   is said to be of measure zero if 

for each    , there exists a finite or countable number of open 

intervals      such that       
 
    and         . 
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 Note. Hence   is a set of measure zero, if given    ,   can be 

covered by a union of open intervals whose total length is less than 

 . It is easy to see that a set consisting of one point of measure zero. 

 The following theorems give some properties of sets of 

measure zero which we need in our discussion. 

Theorem 1. If each of           of   is of measure zero, then    
 
    

is also of measure zero. 

Proof. Let us fix    . Since    is of measure zero, for each positive 

integer  , there exists a finite or a countable number of open 

intervals which cover    and whose total length is less than 
 

  . Then 

the union of all such open intervals for all   covers    
 
   and the 

length of all these countably many intervals is less than 

 

2
 

 

2 
   

 

2 
    . 

Hence, we get    
 
    is a set of measure zero. 

Corollary. Every countable set of   is a set of measure zero. 

 This follows by using the fact that one point sets are of 

measure zero in the theorem 

Definition 2. If a property is true on       expect on a set of measure 

zero, then the property is said to be true almost everywhere on       

or for lmost all points of      . That is, the set of points of       at 

which the property is not true is a set of measure zero. 

 Thus if   is continuous almost everywhere in      , then the 

set of points   of       at which   is not continuous is a set of 

measure zero. 

Example1. If   is not of measure zero, if    , and if   is of measure 

zero, prove that     is not of measure zero. 

 If     is not of measure zero, then let it be of measure zero. 

Now          . By hypothesis   is of measure zero and by 

assumption       is of measure zero. Since union of a finite 

number of sets of measure zero is of measure zero.           

is a set of measure zero contradicting that   is not a set of measure 

zero. Hence     is not a set of measure zero. 

Example 2. If    , prove that       cannot be covered by a finite 

number of open intervals whose total length is less than    . 

 

Integral Functions 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

 Since       is a bounded and closed interval, every open 

covering of       contains a finite subcovering. Hence, it is enough if 

we prove that for a finite collection of open intervals covering      , 

          
   . 

 Since   is contained in    
 
   , there must be one of the   ’s 

which contains  . Let this be the interval        . We have 

       . If     , then          and since         , there 

must be an interval         in the collection      such that 

         . That is         . Proceeding in this manner, we get 

a sequence                    from the collection      such that 

          . 

 Since      is a finite collection, the above process must 

terminate with some interval        . But it ends only when 

         . That is        . Thus  

                          
               

     

                                   

                               

                . 

Since        . But      and      and so          , from 

which we have       
         . 

Example 3. If    , prove that       is not of measure zero. 

 Now from Example 2,       is not of measure zero. 

But             is of measure zero. By Example 1,             

      is not of measure zero. 

Example 4. Prove the following: 

i. The set of rational numbers   is of measure  . 

ii. The set of all irrational numbers is not of measure zero. 

Since   is a countable set, the set   of all rational number is of 

measure zero follows by Corollary 1 of Theorem 1. 

 The set   of all real numbers is not of measure zero.     is 

of measure zero. Hence,        is not of measure zero by 

Example 1. 
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Theorem 2. Let   be a bounded function on the closed and bounded 

interval      . Then   is Riemann integrable if and only if   is 

continuous at almost every point in      . 

Proof. Let us first suppose that   is Riemann integrable in      . 

Then we have to show that the set   of points in       at which   is 

not continuous is of measure zero. Now by Theorem 1 of 5.9,     if 

and only if         . Hence let      
 
    where each    is the 

set of all points   in       such that        
 

 
. To prove that   is of 

measure zero, it is enough if we show that each    is of measure 

zero. 

 Let   be fixed. Since   is Riemann integrable, given     

there exists a partition   of       such that  

                                                     
 

  
 . 

Hence, if            are the closed component interval of  , we have  

        

 

   

             

 

   

             

 

   

     

                           
 

  
 by Hypothesis. 

Hence, we have from the above  

            
        

 

  
          .. 1  

Now let      
    

   where   
  is the set of points of    that are 

the points of the partition and   
       

 . Since there are only 

finite number of point of the partition in   
 , we see that  

  
            , where   

  s are the open subintervals such that 

                 
 

2
 

But if     
  , then   is an interior point of some   . Hence, we have 

               
1

 
. 

If    
    

      
 are those component intervals of   which contain a 

point of   
   in their interior, we have 
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 . 

Hence, we have from (1),  

     
      

        
   

 

2
. 

Since   
   is covered by the interiors of    

    
      

 and since   
  is 

covered by             it follows that    is covered by a finite 

number of intervals, sum of whose lengths is less than  . 

Hence,      
    

   is a set of measure zero. 

To prove the converse, we need the following lemma. 

Lemma. If          for each   in a closed bounded interval  , then 

there   of   such that 

                              2  

Proof. For each    , there is an open interval    containing   such 

that         . Since   is compact, a finite number of these    will 

cover  . Let   be the set of end points of these   . If             are the 

component intervals of  , we have          for   1 2     and 

hence (2) follows easily. 

 Now let us assume that   is continuous at almost every point 

of      , we have to show that  is Riemann integrable on      . 

Given    , choose aa positive integer   such that 
   

 
 

 

 
. 

 If    is defined as the first part of the proof    is of measure 

zero. Hence       
 
    where each    is an open subinterval of 

     . Since             , let us take 

     

 

   

 
 

2          
. 

But we know that    is closed in  . Hence    is a closed subset of 

      and is thus compact. Therefore, a finite number of intervals of 

the      will cover   . Let them be    
    

      
. 

Now           
    

      
  is a union of closed intervals 

          . 

 That is,           
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Since no interval      1 2      contains a point of     there exists 

(by the lemma) a subdivision    of    such that 

                
    

 
. 

Now define a partition   of       as             . Then the 

component intervals of   are the component intervals of            

together with    
    

      
. Hence we have               

                
 
             

         
   

       
  

 
1

 
     

 

   

         
     

 

 

   

 

 
   

 
                

 

 

   

 

 
 

2
           

 

2          
  . 

Hence, by Theorem 3 of 8.1.,   is Riemann integrable on      . So the 

proof of the theorem is complete. 

Example 5. Determine whether the following functions are Riemann 

integrable 

i.      sin
 

 
 for     1 and      2 

ii.         if   
 

 
 when   1 2      and        

otherwise for      1 . 

iii.         if   is rational and        if   is irrational 

iv. Let        for   in    1  and      1 for 

     
 

  
 

 

  
    . 

(i)   is the only point of discontinuity of   in    1 . Hence,   is 

continuous almost everywhere in    1 . Son it is Riemann integrable 

in    1 . 

(ii) The function is continuous in    1  except at the points 

     1 
 

 
 
 

 
   . Since the point of discontinuous are countable and 

any countable set is a set of measure zero, the function is continuous 

almost everywhere on    1 . Therefore,   is Riemann integrable. 
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(iii) Every point of    1  is a point of discontinuity of  . 

Hence,   is discontinuous throughout the interval 

   1 . So   is not Riemann integrable on    1 . 

(iv) From the definition,   is continuous everywhere 

except at the points    
 

  
 

 

  
 

 

  
    which is 

countable and so that function is continuous almost 

everywhere. Hence,   is Riemann integrable on    1 . 

 

Example 6. Find        for the function   defined on    1  as follows: 

        
    

 
 if     and      1 if    . 

In the neighbourhood of    ,        and by hypothesis 

     1. Hence         . 

Example 7. Let   be an arbitrary countable infinite subset of    1 . 

Find a function   defined and bounded on    1  such that       . 

Is   Riemann integrable on    1   

 Let                1 . 

Let us define the function   as follows: 

     
 

 
 if      and        otherwise. 

The function is continuous in    1  except at the set of points 

             which is a set of measure zero. Hence, by the Theorem 

2,   is integrable on    1 . 

10.2 PROPERTIES OF THE RIEMANN 
INTEGRAL 

In this section, we shall consider the Riemann integrable 

functions on a bounded closed interval       and establish some of 

their properties. We shall denote the set of all Riemann integrable 

functions on       by       . 

Theorem 1. If   is Riemann integrable on       and   is any real 

number, then    is Riemann integrable and 

   
 

 

     
 

 

. 
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Proof. If    , the theorem is obvious. Since    is continuous almost 

everywhere on      ,    is Riemann integrable on      . If   is any 

subinterval of       and    , 

               . 

Hence, for any partition   of       we get 

               . 

Therefore, taking glb on both sides of the above, 

   
 

 
     

 

 
  where    .        .. 1  

Hence, we have proved the theorem when    . 

 For any interval  , we have                . Hence, 

                            

 

 

 

                .

 

 

 

From this, we have 

                     

 

 

    

 

 

.                                2  

If      then        and so by (2) and (1) 

   

 

 

       

 

 

     

 

 

     

 

 

    

 

 

. 

This completes the proof of the theorem. 

Theorem 2. If          and           then            and  

      

 

 

   

 

 

   

 

 

. 
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Proof. By Theorem, the sets      and      of points of 

discontinuities of   and   are both of measure zero. By Theorem, the 

set           is of measure zero. 

 If                      then     and hence     are 

continuous at  . Thus     is continuous at almost every point in 

      and so           . 

  If   is any interval contained in       and if    , we have 

                       . 

 For any partition   of        we have by using the above 

results 

      

 

 

         

                                      . .  1  

But given    , there is a partition    of       such that 

                
 

2
   

 

 

 
 

2
. 

Also there is a subdivision    of       such that 

                
 

2
   

 

 

 
 

2
. 

If          then   is a refinement of    and   . So we get 

         

 

 

 
 

2
          

 

 

 
 

2
. 

From (1), we get       
 

 
   

 

 
     

 

 
. 

Since     is arbitrary, this proves that 
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                             . .  2  

Since   and   were any Riemann integrable functions, we can 

substitute –  ,    for   and   in (2). 

Hence,        
 

 
      

 

 
      

 

 
. 

By using the above theorem we have  

        

 

 

     

 

 

   

 

 

                            

Now multiply both sides of (3) by  1. This reserves the inequality 

and so 

                                  

 

 

   

 

 

   

 

 

                             . .     

Hence, the theorem follows from (2) and (4). 

Theorem 3. If          and if        almost everywhere on 

       then  

  

 

 

  . 

We have 

              

 

 

            . 

If        for every          then         . Using this in the 

above inequality, we get 

  

 

 

  . 

From the above theorem, we have the following corollaries. 
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Corollary 1.          and          and if           almost 

everywhere on        then      
 

 

 

 
. 

Proof. By the Theorems 1 and 2, the functions –   and     are 

Riemann integrable. Since             by hypothesis, we have 

by the above Theorems 1,2 and 3, 

        

 

 

          

 

 

   

 

 

      

 

 

   

 

 

   

 

 

. 

From this, we have      
 

 

 

 
. 

Corollary 2. If           then            and we have 

   

 

 

      

 

 

. 

Proof. Since     is continuous at every point where           . 

 Since                    for all          from Corollary 

1 above, we get  

               

 

 

     

 

 

.                           1  

Since –             for all          we have again using 

Corollary1 above,  

                   

 

  

     

 

 

.                           2  

From (1) and (2), we get  

   

 

 

      

 

 

 

Note. In the following, we shall give the proof of the first part of the 

above Corollary 2 by using the definition of Riemann integration. 
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Theorem 4. If         , then           . 

Proof. Since   is bounded in      ,          for every         so 

that     is bounded. Let     be given and let           

               be a partition of       and let       . 

Then we have the following 

                                             . 

As     vary over     we have from above, 

                                    

This implies      

                   

                                              1  

 Since           we get                   for every 

   . 

Using (1) in (2), we get                      . 

Hence,            . 

Note. The converse of the above theorem is not true and it is shown 

by the following example. 

 Let   be a real valued function defined on       by 

      
1                   

 1                     .
  

For any partition of      . We can check easily 

     
  

 
       and   

 

  
       . 

This implies that   is not Riemann integrable in      . But        1 

for every        . Hence,     is Riemann integrable and its value 

equals to      . 

Theorem 5. If          and        then 

                     and   
 

 
      

 

 

 

 
. 
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Proof.  The set   of points       at which   is not continuous is of 

measure zero. Let    be the set of points of discontinuities of   

in     . Then          is a subset of a set of measure zero and 

hence it is of measure zero. So         . Similarly         . 

If   is any partition  of       and   is any partition of      , then 

    is a partition of       whose component intervals are those of 

  together with those of  . 

Hence, we have                           
 

  
 

and so, we have                 
 

 
. 

By taking the least upper bound on the left over all  , keeping   

fixed, we obtain 

                                                 
 

 
          

 

 
. 

Now taking least upper bound over all  , we get  

                                                     
 

 
   

 

 
   

 

 
                                      (1) 

By using similar argument by considering the upper sums, we get 

the reverse inequality,  

   
 

 
   

 

 
   

 

 
                                     (2) 

From (1) and (2), we get     
 

 
   

 

 
   

 

 
. 

Theorem 6.  If   is continuous on a closed and bounded interval 

     , if        for         and if         for some        , 

then   
 

 
       . 

 Proof.  From the properties of continuous functions in Chapter 4, 

there exists a     such that      
 

 
      for some   

               . 
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Now we have by Theorem 5,  

  
 

 
   

   

 
   

   

   
   

 

   
. 

The above formula can be suitably modified when we have       

or      . By Theorem 3 of the order preserving property of the 

integral, we get  

  
 

 

    
1

2
    

   

   

      2 
1

2
             

This proves that   
 

 
  . 

Theorem 7. If   is continuous on      ,        for      , and if 

  
 

 
       , then   is identically zero on      . 

Proof. By hypothesis        in      . If   is not identically zero in 

     , there exists a point   in       such that       . 

               Now   is a continuous function in the bounded closed 

interval       and       . Since        for           , by the 

previous theorem,           which contradicts the hypothesis. 

Hence   is identically zero on      . 

Theorem 8. If   is continuous on       and if             
 

 
 for 

some        , then   is continuous on      . 

Proof. Let              with        . 

Then                         
  

 
               

  

   

   

 
 . 

Now given    , choose   
 

 
 where   is the lub      in      . 

Now                             
 

 
  . 

Hence,                   whenever            . 

This proves that   is continuous on      . 

Theorem 9. If         , then the following statements are true. 

i.          for every subinterval                 . 

ii.          . 

iii.  .         , whenever         . 
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iv. If              , then               where   is bounded 

away from zero. 

v. If   and   are bounded functions having the same 

discontinuities on      , then          if and only if 

        . 

vi. Let          and assume that          for all 

       . If   is continuous on      , then the composite 

function defined by              is Riemann integrable on 

     . 

Proof.     . Let     be given. Then there exists a partition   of 

      such that  

                         . 

Let           . The    is a refinement of       and by the 

Theorem 2 of 8.1, we have 

      
                   and        

                   

Now let           . Then   is obtained by restricting    to 

     . Hence we have the inequality, 

                              
             

             (1) 

because the left-hand side has fewer terms which are all non-

negative than the right hand side. Since         , we get 

                                               .                            (2) 

Using (2) in (1), we get                           . 

Therefore, we get                  . 

    . Let      be given and then there exists a partition   of       

such that  

                                             . 

We know that                        and           
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   2                                
     

where   is an upper bound of   in      . Therefore, we have  

   2
       2

    2                       

Hence, by using theorem 4, we get  

                  
 

2  
 

Hence,      2
       2

      and therefore,             . 

      This follows from the following identity and Theorem 2 (ii) 

proved above.  

   2                                       

(v) Since        for any        , applying (iii),  

 .
 

 
       ,  

provided  
 

 
         whenever          under the given 

condition.  

Hence we shall prove that 
 

 
        , whenever          and   is 

 bounded away from zero. 

              By hypothesis,    is  bounded away from zero and so we have 

         for every        . 

Let                      be a partition  of        and 

let         . 

 
 

    
 

 

    
   

         

        
  

 

  
           . 

From this, we get  

  
 

 
        

 

 
      

 

  
                 . 
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This implies   
 

 
       

 

 
     

 

  
                                 (3) 

Since         , given    , there exists a partition    such that  

                 .                                                                              (4) 

Using (4) in (3), we get     
 

 
       

 

 
      . 

    This follows by Theorem 2. 

     Since   is uniformly continuous on      , given    , there 

exists a     such that     and  

              , if          and           . 

Since         , there is a partition,                     of 

      such that  

                . 

Let           and          for   corresponding to         and  

        on      . Divide the numbers 1 2       into two groups 

such that     if                     and     if           

         . 

  Hence, if    , our choice of   shows that  

                    

Let              in       . Then if    , we get   

                                                                          2 . 

Now,                                            
      . 

From this, it follows that             , 

                        
 

   
               

                                                      

              

         2   
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                                                              2  . 

Since     is arbitrary, we  get         . 

10.5 THE FUNDAMENTAL THEOREM OF 
CALCULUS 

In the previous chapter, we have established that there are 

real valued functions which are not the derivatives of any function 

on   1 1 . In the following theorem, we shall establish that if   is 

continuous on      , there exists a function   on       such that 

          , thus establishing the link between the concepts of 

derivative and integral. 

Theorem 1.  (First Fundamental Theorem of Calculus). If   is 

continuous on the closed bounded interval       and if  

          
 

 
  , then            for      . 

Proof. For any fixed        , choose     and          . Then 

we have the following: 

                 

   

 

        

 

 

   

                                        
   

 
        

 

 
  . 

We can rewrite the above step as, 

                 
   

 
  .                                             (1) 

Since   is continuous on the closed and bounded interval        , 

we know that   attains a maximum value   and a minimum value   

at points of         by Intermediate Value Theorem of continuous 

functions. Hence, there exist points               such that 

                and         . So we get 

     
   

 
            

   

 
   

   

 
                                           (2) 

But                           
   

 
    and   

   

 
                      (3) 

Therefore, using (3) in (2) we get  

        
   

 
     . 
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So, we can find a   such that       and 

  
1

 
     

   

 

   

Since   takes every value between   and   by Intermediate Value 

Theorem of continuous functions, there must exists a point      in 

        such that          . Thus we have proved that if    , 

there exists      in         such that 

        
 

 
     

   

 
    

From (1), we get                
           

 
         

Since           , we have lim         . 

 Since   is continuous at  , the right side of (4) has the limit 

    . Hence, the left side of (4) approaches       as    . So we get 

      lim   
           

 
     . 

In the above proof, we have assumed that   is positive. If   is 

negative, we take         instead of         and make suitable 

modification in the proof. 

Note. The continuity of   is only a sufficient condition for a function 

to be a derivative of a function on      . The continuity is not a 

necessary condition as shown in the Example 7 of 7.1. 

Instead of assuming continuity throughout [    , we assume   to be 

continuous at any point   of       and         . Under this 

hypothesis, we have the following theorem. 

Theorem 2.  If         , if           
 

 
   where       and 

if   is continuous at         , then             . 

Proof. For    , let      denote the interval          . If           

is the oscillation of   in     , we have for       ,              

         . So  

                                     

where       . 

 Hence, we have  
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. 

Since    , we have after dividing by  , 

                   
             

 
                         (1) 

Since   is continuous at    by hypothesis, we have  

                   lim                                       (2) 

Taking the limit as     in (1) and using (2), we get 

            . 

In the above, (1) is established for    . We can establish (1) if 

    in a similar manner. 

DEFINITION 1.  A function   is called a primitive or an antiderivative 

of a function   on a bounded closed interval       if            for 

all   in      . 

 The First Fundamental Theorem of calculus states that we can 

always construct a primitive of a continuous function by integration. 

 Now we shall prove the second fundamental theorem of 

calculus establishing integration as the anti-differentiation or 

reverse process of differentiation. 

THEOREM 3.  (Second Fundamental Theorem of Calculus). If   is a 

continuous function on the closed bounded interval       and if 

           for        , then                  
 

 
. 

Proof. Let           
 

 
  . Since   is continuous, by the First 

Fundamental Theorem, we have 

                                          for      .                      (1) 

 By hypothesis,           . Hence, we have             

for all        . Hence, by the Theorem 4 of 7.3,             for 

      and for some constant   in  . 

Hence,                                           . 

But                      
 

 
     from the definition.  
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Thus,                     . Since           
 

 
  , we have  

     
 

 
             . 

Example 1.  If       sin   2  , find the primitive   of   and use 

the Second Fundamental Theorem to evaluate      
 

 
  . 

Now let      2    cos   whose derivative is the given function 

  in any bounded closed interval      . Since sin   and    are 

continuous in      ,  sin   2   is continuous in      . Hence, by 

the Second Fundamental Theorem of Calculus, we get 

   sin   2   
 

 
             2          cos   

cos   . 

Theorem 4. If      is continuous in the bounded closed interval       

then there exists a number   lying between   and   such that  

     
 

 
            . 

Note: Recharge           
 

 
    Recharge      

Proof.  let    . We can rewrite the above inequality as 

  
 

   
     

 

 
    . 

 

So 
 

   
     

 

 
   is a value between   and   of a continuous 

function on      . Therefore, by Intermediate Value Theorem for 

continuous function in      ,   takes this value at some point   of 

     . So we get 

y 

M 

E F 

       

m 
C 

D 

b x 
A 
B 

a 

x=b 
x=a 
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        for some   in      . 

This proves that                          
 

 
            . 

Check your progress 
1. Define the measure zero set 
2. State First Fundamental Theorem of Calculus. 
3. Define primitive 
4. State Second Fundamental Theorem of Calculus. 

 

10.6 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1) A subset   of   is said to be of measure zero if for each    , 

there exists a finite or countable number of open intervals      such 

that       
 
    and         . 

2) If   is continuous on the closed bounded interval       and if 

          
 

 
  , then            for      . 

3) A function   is called a primitive or an antiderivative of a 

function   on a bounded closed interval       if            for all 

  in      . 

4) If   is a continuous function on the closed bounded interval 

      and if            for        , then              
 

 

    . 

10.7 SUMMARY 
 A subset   of   is said to be of measure zero if for each 

   , there exists a finite or countable number of open intervals      

such that       
 
    and         . 

 If each of           of   is of measure zero, then 

   
 
    is also of measure zero. 

 Every countable set of   is a set of measure zero. 

 If a property is true on       expect on a set of 

measure zero, then the property is said to be true almost everywhere 

on       or for almost all points of      . That is, the set of points of 

      at which the property is not true is a set of measure zero. 

 Let   be a bounded function on the closed and 

bounded interval      . Then   is Riemann integrable if and only if   

is continuous at almost every point in      . 
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 If   is Riemann integrable on       and   is any real number, 

then    is Riemann integrable and 

   
 

 

     
 

 

. 

 If          and           then            and  

      

 

 

   

 

 

   

 

 

. 

 If          and if        almost everywhere on        then  

  

 

 

  . 

          and          and if           almost 

everywhere on        then      
 

 

 

 
. 

 If           then            and we have 

   

 

 

      

 

 

. 

 If         , then           . 

 If          and        then 

                  and   
 

 
      

 

 

 

 
. 

 If   is continuous on a closed and bounded interval      , if 

       for         and if         for some        , 

then   
 

 
       . 

 If   is continuous on      ,        for      , and if 

  
 

 
       , then   is identically zero on      . 

 If   is continuous on       and if             
 

 
 for some 

       , then   is continuous on      . 

 First Fundamental Theorem of Calculus: If   is continuous on the 

closed bounded interval       and if  

          
 

 
  , then            for      . 

 If         , if           
 

 
   where       and if   is 

continuous at         , then             . 

 A function   is called a primitive or an antiderivative of a 

function   on a bounded closed interval       if            for all 

  in      . 

 Second Fundamental Theorem of Calculus: If   is a continuous 

function on the closed bounded interval       and if            

for        , then                  
 

 
. 
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 If      is continuous in the bounded closed interval       then 

there exists a number   lying between   and   such that       
 

 
   

         . 

10.8 KEYWORDS 
 A subset   of   is said to be of measure zero if for each 

   , there exists a finite or countable number of open intervals      

such that       
 
    and         . 

 If a property is true on       expect on a set of measure 

zero, then the property is said to be true almost everywhere on       

or for almost all points of      . That is, the set of points of       at 

which the property is not true is a set of measure zero. 

 A function   is called a primitive or an antiderivative of 

a function   on a bounded closed interval       if            for all 

  in      . 

10.9 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1) Prove that if   is continuous on    1  and if           

almost everywhere      1 , then   is continuous almost everywhere 

in    1 . 
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3) D. Somasundaram & B. Choudhary, A first course in 

Mathematical Analysis, Narosa Publishing House, Chennai. 
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Analysis, R. Chand & Co. June 1997 Edition. 

5) Shanthi Narayan, A Couse of Mathematical Analysis, S. Chand & 
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UNIT 11 CONTRACTION MAPPING AND ITS 
APPLICATIONS 

Structure 

11.0  Introduction  

11.1 Objectives  

11.2 Contraction Mapping 

          11.2.1 Definition and Examples  

11.3 Contraction Mapping Theorem and Its Applications 

11.4 Answers to Check Your Progress Questions 

11.5 Summary 

11.6 Keywords 

11.7 Self Assessment Questions and Exercises 

11.8 Further Readings 

11.0   INTRODUCTION 

In this chapter we introduce a class of functions called 

contraction mappings and we prove a simple result regarding 

contraction mappings on a complete metric space. We illustrate the 

use of this theorem in classical analysis by proving the existence and 

uniqueness of solution of a differential equation of first order. 

11.1 OBJECTIVES 
After going through this unit, you will be able to: 

  Understand what is meant by Contraction Mapping 

  Discuss the applications of contraction mapping  

11.2 CONTRACTION MAPPING 

11.2.1 Definition and Examples 

Definition: Let       be a metric space. A mapping       is 

called a contraction mapping if there exists a positive real number 

  1 such that                       for all      . 
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Note: If   is a contraction mapping then the distance              is 

less than the distance       . Thus applying   to any two points     

contracts  the  distance between the two points. 

Example 1.      
 

 
     

 

 
  defined by         is a contraction 

mapping. 

Proof. Let        
 

 
 . 

 Then                      

                                                                

                                                       
 

 
       (since     

 

 
) 

 
2

 
       

                                      
 

 
       

Hence   is a contraction mapping. 

Example 2.       defined by      
 

 
  is a contraction mapping 

since              
 

 
      . 

Example 3.         defined by       
 

 
    is a contraction 

mapping where       . 

Proof. Let       . Let       ,        .  

Now,                 
  

 
 

  

 
 

 
 
    

   

 
 

 
           

        

                                                                                     
 

 
      . 

   is a contraction mapping. 

Example 4. Let      1      1  be a differentiable function. If there is 

a real number   with     1 such that           for all      1  

where    is the derivative of   then   is a contraction mapping. 

Proof. Let        1  and    .  

By mean value theorem                      where      .  
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                                 . 

                                                        and     1. 

   is a contraction mapping. 

11.3            CONTRACTION MAPPING THEOREM   
AND ITS APPLIVATIONS 

Theorem 11.1 Let       be a contraction mapping. Then   is 

continuous on  . 

Proof. Since   is contraction mapping  

                    for all          1  

 Let     be given. Choose    . 

Then                                ( by (1)) 

   is continuous. 

Theorem 11.2 (Contraction mapping theorem) 

Let       be a complete metric space. Let       be a contraction 

mapping. Then there exists a unique point     such that       . 

(i.e.)   has exactly one fixed point. 

Proof. Let   be an arbitrary point in  . 

                Let                                            

         

         

     

     

           

     

We claim that      is a Cauchy sequence in  .  Since   is a 

contraction mapping, there exists a real number   such that 

     1 and                       . 
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                                                                .   1  

Now, let       and    .  

Then                                                         

                                                              

                                                                                    using (1) 

                                               1                  

                                                
 

   
 . 

Thus          
          

   
 for all     such that    .  

Now, since     1, the sequence       . 

  Given     there exists a positive integer    such that 
          

   
   for all     . 

Then            for all       . 

Hence      is a Cauchy sequence in  . 

Since   is complete there exists     such that       . 

Also by Theorem,   is continuous and hence            . 

      lim         lim         . 

Thus       . 
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Hence   is a fixed point of  . 

Now, Suppose there exists     such that     and       . 

Then                            . 

        1      . 

But          and 1      which is a contraction. 

   is the unique fixed point of  . 

Theorem 11.   Picard’s Theorem  

Let 
  

  
        be a given differential equation where        is 

continuous in a closed rectangle 

                                                     

and satisfy the Lipchitz condition given by                   

         for all        and         . Let         be an interior 

point of  . Then there exists a unique solution        of the 

differential equation such that         . 

Proof.  We first replace our problem by an equivalent problem 

relating to an integral equation. 

 Let        be a solution to the given differential equation 

such that         .  

 Then 
 

  
                .  

Integrating from    to   we get                        .
 

  
 

(i.e.)                     
 

  
         .. 1  

 Now, if        satisfies the integral equation (1), then it 
satisfies the given differential equation and         . 
              It is enough to prove that the integral equation (1) has a 
unique solution. 
 Now, since   is continuous on the compact set  , it is 
bounded. 
             There exist a real number     such that  
           for all                    2  
 Now, choose a real number     such that    1 and a 
rectangle  
                                   contained in F. 
 Let    be the set of all continuous functions  
                                such that             . 
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By solved problem,    is a complete metric space. 
Let                                        . 

Define        where                     
 

  
. 

Clearly   is continuous. 

Also,                        
 

  
 .                   (from 1) 

                                            
                                      
                   .  

       
   is a mapping from      . 
Now we claim that   is a contraction mapping. 
 
Let         ,          and         . Then 

                                         

 

  

  

 

                                                                           
 

  
  

 

                                                                  
 

  
  

 using Lipchitz’s condition   
                                                       sup                 
 
                                                           . 
 
     Thus                         . 
 

                           . 
 
Since    1   is a contraction mapping. 
 
Hence there exists a unique function      such that       . 
 

                     
 

  
. 

    is the unique solution of the integral equation (1). Hence the 
theorem. 
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Check your progress 
1) Define contraction mapping 
2) If       is a contraction mapping. Then T? 
3) State contraction  mapping theorem. 
 

11.4 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1) Let       be a metric space. A mapping       is called a 

contraction mapping if there exists a positive real number   1 

such that                       for all      . 

2) Let       be a contraction mapping. Then   is continuous on 

 . 

3) Let       be a complete metric space. Let       be a 

contraction mapping. Then there exists a unique point     

such that       . 

(i.e.)   has exactly one fixed point. 

11.5 SUMMARY 
 Let       be a metric space. A mapping       is called a 

contraction mapping if there exists a positive real number 

  1 such that                       for all      . 

 Let       be a contraction mapping. Then   is continuous 

on  . 

 Contraction mapping theorem: Let       be a complete 

metric space. Let       be a contraction mapping. Then 

there exists a unique point     such that       . 

(i.e.)   has exactly one fixed point. 

 Picard’s Theorem  Let 
  

  
        be a given differential 

equation where        is continuous in a closed rectangle 

                                                     

and satisfy the Lipchitz condition given by                   

         for all        and         . Let         be an interior 

point of  . Then there exists a unique solution        of the 

differential equation such that         . 
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11.6 KEYWORDS 
Contraction mapping : Let       be a metric space. A mapping 

      is called a contraction mapping if there exists a positive 

real number   1 such that                       for all 

     . 

Contraction mapping theorem: Let       be a complete metric space. 

Let       be a contraction mapping. Then there exists a unique 

point     such that       . 

(i.e.)   has exactly one fixed point. 

11.7 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Prove that any contraction mapping   defined on a metric 

space is continuous. 

2. Prove that any contraction mapping   defined on a metric 

space is uniformly continuous. 

3. Prove that any contraction mapping   defined on a complete  

metric space has a unique fixed point. 

11.8  FURTHER READINGS 

1) Arumugam & Issac, Modern Analysis, New Gamma Publishing 

House, Palayamkottai, 2010. 

2) Richard R. Goldbrg, Methods of Real Analysis, Oxford & IBH 

Publishing Company, New Delhi. 

3) D. Somasundaram & B. Choudhary, A first course in 

Mathematical Analysis, Narosa Publishing House, Chennai. 

4) M.K. Singhal & Asha Rani Singhal, A First Course in Real 

Analysis, R. Chand & Co. June 1997 Edition. 

5) Shanthi Narayan, A Couse of Mathematical Analysis, S. Chand 

& Co., 1995 
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BLOCK IV 
CONNECTED AND COMPACT METRIC SPACES 

 

UNIT-12 CONNECTEDNESS 

Structure 

12.0 Introduction 

12.1 Objectives 

12.2 Definition and Examples 

12.3 Connected Subsets of R 

12.4 Connectedness and Continuity 

12.5 Answers to Check Your Progress Questions 

12.6 Summary 

12.7 Keywords 

12.8 Self Assessment Questions and Exercises 

12.9 Further Readings    

12.0 INTRODUCTION 
In   consider the subsets    1 2  and    1 2       . The set   

consists of a single ‘piece’ whereas   consists of ‘two pieces’. We say 

that   is a connected set and   is not a connected set. This intuitive 

idea is made precise in the following definition. 

12.1 OBJECTIVES 

After going through this unit, you will be able to: 

 Understand what is Connected sets 

 Discuss Connectedness and Continuity 

12.2 DEFINITION AND EXAMPLES 
Definition. Let       be a metric space.   is said to be connected if 

  cannot be represented as the union of two disjoint non-empty 

open sets. 
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 If   is not connected it is said to be disconnected.  

Example 1. Let    1 2        with usual metric. Then   is 

disconnected. 

Proof.  1 2  and       are open in  . 

 Thus   is the union of two disjoint non-empty open sets 

namely  1 2  and      . 

 Hence   is disconnected. 

Example 2. Any discrete metric space   with more than one point is 

disconnected. 

Proof. Let   be a proper non-empty subset of  . Since   has more 

than one point such a set exists. 

 Then    is also non-empty. 

 Since   is discrete every subset of   is open. 

   and    are open. 

 Thus        where   and    are two disjoint non-empty 

open sets. 

    is not connected. 

Theorem 12.1 Let       be a metric space. Then the following are 

equivalent. 

i.   is connected. 

ii.   cannot be written as the union of two disjoint non-empty 

closed sets. 

iii.   cannot be written as the union of two non-empty sets   

and   such that            . 

iv.   and   are the only sets which are both open and closed in 

 . 

 

Proof. (i)   (ii) 

 Suppose (ii) is not true. 

        where   and   are closed         and      .  

         and      
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Since   and   are closed,    and    are open. 

   and   are open. 

Thus   is the union of two disjoint non-empty open sets. 

   is not connected which is a contradiction.  

   (i) (ii) 

(ii) (iii) 

Suppose (iii) is not true. 

Then       where         and            .  

 We claim that   and   are closed. 

Let     . 

          (Since       ) 

          (Since      ). 

      and hence   is closed. 

Similarly   is closed. 

Now           (Since      ). 

      . 

 Thus       where        ,   and   are closed and 

      which is a contradiction to (ii). 

            

            

Suppose (iv) is not true. 

Then there exists     such that     and     and   is 

both open and closed. 

Let     . 

Then   is also both open and closed and    . 

Also      . 

Further           (Since      and     ). 
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    . 

Similarly       . 

       where             which is a contradiction to 

(iii). 

               . 

(iv) (i) 

 Suppose   is not connected. 

        where        ,   and   are open and      . 

 Then     . Now, since   is open   is closed. 

Also     and      (Since    ). 

   is a proper non-empty subset of   which is both open and closed 

which is a contraction to (iv). 

          

The following theorem gives another equivalent characterization for 

connectedness. 

Theorem 12.2 A metric space   is connected iff there does not exist a 

continuous function   from   onto the discrete metric space    1 . 

Proof. Suppose there exists a continuous function   from   onto the 

discrete metric space    1 . 

 Since    1  is discrete, {0} and {1} are open. 

            and        1   are open in  . 

Since   is onto,   and   are non-empty. 

                Clearly       and      . 

Thus       where   and   are disjoint non-empty open sets. 

    is not connected which is a contradiction. 

Hence there does not exist a continuous function from onto the 

discrete metric space    1 . 

 Conversely, suppose   is not connected. 
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Then there exist disjoint non-empty open sets   and   in   such 

that      . 

Now, define        1  by       
        
1       

  

Clearly,   is onto. 

Also         ,           ,      1     and        1   

 . 

Thus the inverse image of every open set in    1  is open in  . 

Hence   is continuous.  

Thus there exists a continuous function   from   onto    1  

which is a contradiction. Hence   is connected. 

Note. The above theorem can be restated as follows. 

   is connected iff every continuous function        1  is 

not onto. 

Solved Problems 

Problem 1. Let   be a metric space. Let   be a connected subset of 

 . If   is a subset of   such that        then   is connected. In 

particular    is connected. 

Solution. Suppose   is not connected. 

 Then         where                   and    

and    are open in  . 

Now, since    and    are open sets in   there exist open sets    and 

   in   such that         and        . 

                                 . 

           . 

         (since    ). 

               . 

               

Now,                 are open in  . 

Further,                        . 
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                                                           (since    ) 

                                                               

                                                       

                                                  . 

                      . 

Now, since   is connected, either        or       . 

Without lose of generality let us assume that        . 

Since    is open in  , we have        . 

             (since     ). 

 

      which is a contradiction. 

   is connected. 

Problem 2. If   and   are connected subsets of a metric space   and 

if      , prove that     is connected. 

Solution. Let          1  be a continuous function. 

Since      , we can choose       . 

Let        . 

 Since          1  is continuous          1  is also 

continuous. 

 But   is connected. 

Hence     is not onto. 

        for all     or      1 for all    . 

But         and     . 

           for all    . 

Thus any continuous function          1  is not onto. 

        is connected. 
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12.3  CONNECTED SUBSETS OF R 

Theorem 12.3 A subspace of   is connected iff it is an interval. 

Proof. Let   be a connected subset of  . 

 Suppose   is not an interval. 

Then there exist       such that       and       but 

   . 

 Let             and           . 

Since        and       are open in  ,    and    are open sets 

in  . 

 Also         and        . Further      and     . 

 Hence      and     . 

Thus   is the union of two disjoint non-empty open sets    and 

  . 

 Hence   is not connected which is a contradiction. 

Hence   is an interval.  

Conversely, let   be an interval. We claim that   is connected. 

Suppose   is not connected. Let         where     ,  

    ,          and    and    are closed sets in A. 

Choose      and     . Since         we have    . 

Without loss of generality we assume that    . 

Now, since   is an interval we have        . 

(i.e.)            .  

  Every element of       is either in    or in   . 

Now, let    .  .  .           . 

 Clearly,      .  

Hence    . 

Let     be given. Then by the definition of l.u.b there exists 

           such that        . 
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                        . 

           
              

            (since          is closed in  ). 

Therefore,                                     1  

 Again by the definition of          for all     such that 

     . 

                                                
     

      (since    is closed).              . 2  

         [by (1) and (2)] which is a contradiction since 

       . 

Hence   is connected. 

Theorem 12.4   is Connected. 

Proof.          is an interval. 

      is connected. 

Solved Problems 

Problem 1. Give an example to show that a subspace of a connected 

metric space need not be connected. 

Solution. We know that   is connected. 

    1 2        is a subspace of   which is not connected. 

Problem 2. Prove or disprove if   and   are connected subsets of a 

metric space   and if      , then   is connected. 

Solution. We disprove this statement by giving a counter example. 

 Let    1 2 ;    1 2       ;    .  

Clearly      . 

 Here   and   are connected. But   is not connected. 
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12.4 CONNECTEDNESS AND CONTINUITY 

Theorem 12.5 Let    be a connected metric space. Let    be any 

metric space. Let         be a continuous function. Then       

is a connected subset of   . 

        .  .                                                      .  

Proof. Let         so that   is a function from    onto  . 

We claim that   is connected. 

 Suppose   is not connected. Then there exists a proper non-

empty subset   of   which is both open and closed in  . 

         is a proper non-empty subset of    which is both 

open and closed in   . Hence    is not connected which is a 

contradiction. 

 Hence   is connected. 

Theorem 12.6 Let   be a real valued continuous function defined on 

an interval  . Then   takes every value between any between any 

two values it assumes. 

                                                 . 

Proof. Let       and let          . 

Without loss of generality we assume that          . 

 Let   be such that            . 

The interval   is a connected subset of  . Therefore,      is a 

connected subset of  .   (by theorem 12.5) 

       is an interval.           (by theorem 12.3) 

Also               . Hence                 . 

                     [since            ] 

        for some    . 

Solved Problems 
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Problem 1. Prove that if   is a non-constant real valued continuous 

function on   then the range of   is uncountable. 

Solution. We know that   is connected. 

Since    is a continuous function on  ,      is a connected subset of 

 . 

        is an interval in  . 

Also, since   is a non-constant function the interval.      contains 

more than one point. 

      is uncountable. (i.e.) the range of   is uncountable.  

Check your progress 
1) Define connected set and disconnected set. 
2) Any continuous image of a connected set is? connected. 
3) What about R? Connected or disconnected. 
 

12.5 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let       be a metric space.   is said to be connected if   

cannot be represented as the union of two disjoint non-empty open 

sets. 

If   is not connected it is said to be disconnected.  

2. Any continuous image of a connected set is connected. 

3. R is Connected. 

12.6 SUMMARY 
 Let       be a metric space.   is said to be connected if   

cannot be represented as the union of two disjoint non-empty open 

sets. 

 If   is not connected it is said to be disconnected.  

 Let    1 2        with usual metric. Then   is 

disconnected. 

 Any discrete metric space   with more than one point is 

disconnected. 

 Let       be a metric space. Then the following are 

equivalent. 

v.   is connected. 

vi.   cannot be written as the union of two disjoint non-

empty closed sets. 
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vii.   cannot be written as the union of two non-empty 

sets   and   such that            . 

viii.   and   are the only sets which are both open and 

closed in  . 

 A metric space   is connected iff there does not exist a 

continuous function   from   onto the discrete metric space 

   1 . 

   is connected iff every continuous function        1  is 

not onto. 

 A subspace of   is connected iff it is an interval. 

   is Connected 

 Let    be a connected metric space. Let    be any metric 

space. Let         be a continuous function. Then       

is a connected subset of   . 

 Let   be a real valued continuous function defined on an 

interval  . Then   takes every value between any between any 

two values it assumes. 

                                                 . 

12.7 KEYWORDS 
Connected: Let       be a metric space.   is said to be connected if 

  cannot be represented as the union of two disjoint non-empty 

open sets. 

Disconnected: If   is not connected it is said to be disconnected. 

12.8 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. Let      be a family of connected subsets of a metric space   

such that      . Then prove that       is a connected 

subset of  . 

2. Prove that the set of all components of a metric space   

forms a partition of  . 

3. Let                 be connected subsets of a metric space 

  each of which intersects its successor. Prove that    
 
    

is connected. 

4. Prove that any connected subset of   containing more than 

one point is uncountable. 

5. If   is a metric space and     then     is a connected 

subset of  . 
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UNIT 13 COMPACTNESS 
Structure 

13.0 Introduction  

13.1 Objectives  

13.2 Complete metric space 

          13.2.1 Definition and Examples  

13.3 Compact Subset of R 

13.4 Answers to Check Your Progress Questions 

13.5 Summary 

13.6 Keywords 

13.7 Self Assessment Questions and Exercises 

13.8 Further Readings  

13.0          INTRODUCTION 

We have seen that the concept of completeness is the 

abstraction of a property of the real number system. The concept of 

compactness is also an abstraction of an important property 

possessed by subsets of   which are closed and bounded. This 

property is known as Heine Borel theorem which states that if     

is a closed interval, any family of open intervals in   whose union 

contains   has a finite subfamily whose union contains  .We now 

introduce the class of   compact metric spaces in which the 

conclusion of  Heine Borel theorem is valid. 

13.1          OBJECTIVES 

After going through this unit, you will be able to: 

 Understand what is Complete metric space 

 Discuss Compact Subset of R 

13.2 COMPLETE METRIC SPACE 
13.2.1 Definition and Examples 

Definition:  Let   be a metric space. A family of open sets      in   

is called an open cover for   if      . 

                  A subfamily of       which itself is an open cover is called a 

subcover. 

                  A metric space   is said to be compact if every open cover 

for   has finite subcover. 
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     (i.e.) for each family of open sets      such that      , there 

exist a finite subfamily     
    

      
   such that     

 
     . 

 Example 1.   with usual metric is not compact. 

Proof. Consider the family of open intervals             N . 

This is a family of open sets in  . 

Clearly         
     . 

              N  is an open cover for   and  this open cover has 

no finite subcover. 

     is not compact. 

Example 2.    1  with usual metric is not compact. 

Proof. Consider the family of open intervals   1    1    2          

Clearly   
 

 
 1  

       1 . 

      1    1    2          is an open cover for (0, 1) and this open 

cover has no finite subcover. 

Hence    1  is  not compact. 

Example 3.        with usual metric is not compact. 

Proof.  Consider the family of intervals            . 

      is open in        for each    . 

Also         
           . 

             is an open cover for       and this open cover has 

no finite subcover. 

Hence       is  not compact. 

Example 4.  Let   be an infinite set with discrete metric. Then   is 

not compact. 

Proof.  Let    . Since   is a discrete metric space     is open in  . 

Also          . 

Hence           is an open cover for   and since   is infinite, this 

open cover has no finite subcover. 

Hence   is not compact. 
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Example 5. Any closed interval       with usual metric is compact. 

Theorem 13.1  Let   be a metric space. Let    .   is compact iff  

given a family of open sets      in   such that       there exists 

a subfamily     
    

      
   such that     

 
     . 

Proof.  Let   be a compact subset of  . 

Let      be a family of open sets in   such that      . 

Then          . 

            . 

Also       is open in  . 

  The family          is an open cover for  . 

Since   is compact this open cover has a finite subcover, say, 

   
      

   . . .     
  . 

       
    

     . 

      
    

     . 

      
  

    . 

Conversely, let      be an open cover for  . 

  Each    is open in  . 

          where    is open in  . 

Now,      . 

            . 

          . 

           

Hence by hypothesis there exists a finite subfamily     
    

      
   

such that      

 
     . 

      
    

     . 

       
    

     . 
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     . 

Thus     
    

      
   is a finite subcover of the open cover     . 

    is compact. 

Theorem 13.2  Any compact subset   of a metric space   is bounded. 

Proof.  Let     . 

Consider              . 

Clearly            
   . 

             
   . 

Since   is compact there exists a finite subfamily say, 

                              such that             
   . 

Let    ma         .     . 

Then                   
 
   . 

           . 

We know that           is a bounded set and a subset of a bounded 

set is bounded. Hence   is bounded.                                     

Note: 

The converse of the above theorem is not true. 

For example,    1  is a bounded subset of  . But it is not compact. 

Theorem 13.3 Any compact subset   of a metric space      is 

closed. 

Proof.  To prove that   is closed we shall prove that    is open. 

Let      and let    . Then    . 

             . 

It can be easily verified that      
 

 
            

 

 
      . 

Now consider the collection       
 

 
         . 

Clearly       
 

 
         . 
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Since   is compact there exists a finite number of such open balls 

say,       
 

 
   

           
 

 
   

   such that 

        
 

 
   

     
   .-------------------->(1) 

Now, let           
 

 
   

   
    

Clearly    is an open set containing  . 

Since      
 

 
            

 

 
      , we have         

 

 
   

     

for each   1 2    . 

           
 

 
   

    
     . 

          [by (1)]. 

      . 

            and each    is open. 

     is open. Hence   is closed. 

Note 1.  The  converse of the above theorem is not true. 

 For example,    1  is a closed subset of  . But it is not compact. 

Note 2. It follows from the above two theorems that any compact 

subset of a metric space is closed and bounded. 

Theorem 13. 3 A closed subspace of a compact metric space is 

compact. 

Proof. Let   be a compact metric space. Let   be a non-empty closed 

subset of   . 

We claim that   is compact. 

Let           be a family of open sets in   such that         . 

               . 

Also    is open, since   is closed. 

                is an open cover for  . 

Since   is compact it has a finite subcover say    
    

      
   . 
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         . 

     
   

   . 

   is compact. 

13.3 COMPACT SUBSETS OF R 

We have already proved that compact subset of a metric 

space is closed and bounded. 

 However the converse is true. 

For example, consider an infinite discrete metric space      . 

Let   be an infinite subset of  . 

Then   is bounded since        1 for all       .  

Also   is closed since any subset of a discrete metric space is closed. 

Hence   is closed and bounded. 

However   is not compact. 

In this section we shall prove that for   with usual metric the 

converse is also true. 

Theorem 13.     [Heine Borel Theorem] 

 Any closed interval       is a compact subset of  . 

Proof.  

 Let           be a family of open sets in   such that 

             . 

Let                and       can be covered by a finite number of 

  ’s. 

Clearly     and hence    . 

Also   is bounded above by b. 

Let   denote the l. u. b. of   . 

Clearly         

      
 for some     . 
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Since    
 is open, there exists     such that              

. 

Choose          such that      and           
. 

Now, since     , [a,   ] can be covered by a finite number of    ’s. 

These finite number of   ’s together with    
 covers      . 

  By definition of  ,    . 

Now, we claim that    . 

Suppose    . 

Then choose          such that      and           
. 

As before,        can be covered by a finite number of    ’s. 

Hence     . 

But      which  is  a contradiction, since   is the l. u. b. of   . 

    . 

       can be covered by a finite number of   ’s. 

       is a compact subset of  . 

Theorem 13.     A subset   of   is compact iff   is closed and 

bounded. 

Proof. If   is compact then   is closed and bounded. 

Conversely, let   be subset of   which is closed and bounded.  

Since   is bounded we can find a closed interval       such that 

       . 

Since   is closed in  ,   is closed interval        also. 

Thus   is a closed subset of the compact space      . 

Hence   is compact. 

Definition.  A family   of subsets  of a set    is said to have the finite 

intersection property if any finite members of   have non-empty 

intersection. 

Example. In   the family  of closed intervals                has 

finite intersection property. 
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Theorem    A metric space   is compact  iff any family of closed sets 

with finite intersection property has non-empty intersection. 

Proof.  Suppose   is compact. 

Let      be a family of closed subsets of   with finite intersection 

property. 

We claim that      . 

Suppose        then           . 

     
   . 

Also, since each    is closed,   
  is open. 

    
    is an open cover for  . 

Since   is compact this open cover has a finite subcover say, 

  
   

 
      

 . 

     
 

 
     . 

     
 
        . 

     
 
      which is a contradiction to the finite intersection 

property. 

       . 

 Conversely, suppose that each family of closed sets in   with 

finite intersection property has non-empty intersection. 

To prove that   is compact, let          be an open cover for  . 

          . 

              . 

     
        . 

Since    is open,   
  is closed for each  . 

       
       is a family of closed sets whose intersection is 

empty.    

Hence by hypothesis this family of closed sets does not have the 

finite intersection property. 
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Hence there exists a finite sub-collection of    say,    
    

      
   

such that     
  

     . 

      
 
       . 

      
 
     . 

         .      is a finite subcover of the given open cover. 

Hence   is compact. 

Definition. 

 A metric space   is said to be totally bounded if for every 

    there exists a finite number of elements                

such that                  .          . 

                 A non-empty subset   of a metric space   is said to be 

totally bounded if the subspace   is a totally bounded metric space. 

Theorem.  Any compact metric space is totally bounded. 

Proof.  Let   be a compact metric space. 

Then              is an open cover for  . 

Since   is compact this open cover has a finite subcover say, 

                 .         . 

                    .        . 

    is totally bounded. 

Theorem  Let    be a subset of a metric space  . If   is totally 

bounded then   is bounded. 

Proof. Let   be a totally bounded subset of   . Let     be given. 

Then there exists a finite number of points             , such 

that  

                 .          , where          is an open 

ball in  . 

Further we know that an open ball is a bounded set. 
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Thus   is the union of  finite number of bounded sets and hence   is 

bounded. 

Note.  The converse of the above theorem is not true. 

For, let   be an infinite set with discrete metric. 

Clearly   is bounded. 

Now,     
 

 
     . 

Since   is infinite,   cannot be written as the union of a finite 

number of open balls      
 

 
 . 

     is not totally bounded. 

Definition.  Let      be sequence in a metric space  . Let 

              be an increasing sequence of positive 

integers. Then     
   is called a subsequence of (  ). 

Theorem.  A metric space       is totally bounded iff every 

sequence in   has a Cauchy subsequence. 

Proof.  Suppose every sequence in   has a Cauchy subsequence. 

We claim that   is totally bounded. 

Let      be given. Choose     . 

If           then obviously   is totally bounded.    

 If          , choose              so that            . 

Now , if                   the proof is complete. 

If not choose                         and so on. 

Suppose this process does not stop at a finite stage. 

Then we obtain a sequence                 such that            

if    . 

Clearly this sequence      can not have a Cauchy sequence which is a 

contradiction.   

Hence the above process stops at a finite stage and we get a finite set 

of points              such that                    . 

       . 
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   is totally bounded. 

               Conversely suppose   is totally bounded. 

Let              .       .   be a sequence in  . 

If one term of the sequence is infinitely repeated then    contains a  

constant subsequence which is obviously a Cauchy subsequence. 

Hence we assume that no term of    is infinitely repeated so that the 

range of    is infinite. 

Now, since   is totally bounded   can be covered by a finite number 

of open balls of radius 1 2. 

Hence at least one of these balls must contain an infinite number of 

terms of the sequence      . 

      contains a subsequence        
    

  .     
  .   all terms of 

which lie within an open ball of radius 1 2. 

Similarly     contains a subsequence        
    

  .     
  .   all 

terms of which lie within an open ball of radius 1  . 

We repeat this process of forming successive subsequences and 

finally we take the diagonal sequence       
    

         .  . 

We claim that   is a Cauchy subsequence  of      . 

If     both     
 and    

 lie within an open ball of radius 1  . 

      
    

  2  . 

Hence      
    

    if      2  . 

This shows that   is a Cauchy subsequence of   . 

Thus every sequence in   contains a Cauchy subsequence. 

Corollary.   A non-empty subset of a totally  bounded set id totally 

bounded. 

Proof.  Let   be a totally bounded subset of a metric space  . 

Let   be a non-empty subset of  . 

Let      be a sequence in  . 

         is a sequence in  . 
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Since   is a totally bounded       has a Cauchy subsequence. 

Thus every sequence in   has a Cauchy subsequence. 

   is totally  bounded. 

Definition 

A metric space   is said to be sequentially compact if every 

sequence in   has a convergent sun-sequence. 

Theorem 

 Let       be a Cauchy sequence in a metric space  . If       

has a subsequence     
  converging to  , then       converges to  . 

Proof. Let      be given. Since       is a Cauchy sequence, there 

exists a positive integer    such that           
 

 
  for all 

           -----------------------------> (1) 

Also, since     
   , there exists a positive integer    such that  

     
    

 

 
  for all         ----------------------> (2) 

Let    ma          and fix       . 

Then                      
         

     

                               
 

 
      

 

 
   for all       by (1) and (2) 

                                 for all       . 

Hence       . 

Theorem   In a metric space   the following are equivalent. 

i.   is compact. 

ii. Any infinite subset of   has a limit point. 

iii.   is sequentially compact. 

iv.   is totally bounded and complete. 

Proof.  

         . Let   be an infinite subset of   . 

Suppose   has no limit point in  . 

Let    . 
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     Since   is not a limit point of   there exists an open ball         

such that                  . 

 

              
                  
                   

    

Now,               is open cover for  . 

Also each        covers at most one point of the infinite set  . 

Hence this open cover can not have a finite sub cover which is a 

contradiction to    . Hence   has at least one limit point. 

           .  Let      be a sequence in  . 

If one term of the sequence is infinitely repeated, then      contains 

a constant subsequence which is convergent. 

Otherwise       has an infinite number of terms. 

By hypothesis this infinite set has a limit point, say  . 

We know that for any     the open ball        contains infinite 

number of terms of the sequence      . 

Now, choose a positive integer  , such that     
     1 . 

Then choose        such that    
     1 2   . 

In general for each positive integer   choose    such that           

and  

   
     1    . 

Clearly      
  is a subsequence of       . 

Also      
      1   . 

     
   . 

Thus     
  is a convergent subsequence of       . 

Hence   is sequentially compact. 

           .  By hypothesis every sequence in   has a convergent 

subsequence. 
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But every convergent sequence is a Cauchy sequence. 

Thus every sequence in   has a Cauchy subsequence. 

  By the theorem,   is totally bounded. 

Now, we prove that   is complete. 

Let      be a Cauchy sequence in  . 

By hypothesis      contains a convergent subsequence     
 . 

Let     
   . (say) 

Then by previous theorem,        . 

    is complete. 

         .   Suppose   is not compact. 

  Then  there exists an open cover      for   which has no finite 

subcover. 

Let     
 

   . 

 Since   is totally bounded,   can be covered by a finite number of 

open balls of radius   . 

Since   can not be covered by a finite number of   ’s at least one of 

these open balls, say          cannot be covered by a finite number 

of    ’s. 

Now,            is totally bounded. 

Hence as before we can find                such that           

cannot be covered by a finite number of    ’s. 

Proceeding like this we obtain a sequence      in   such that 

          cannot be covered by a finite number of    ’s  and 

                 for all n. 

Now, 

             

                              .                   

                                             .          
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1

2 
  

1

2   
    

1

2     
 

                              
 

     
  

 

 
  

 

  
     

 

  
    

 

     
 . 

                              
 

       
 

 
  

 

       
 

      
 

      . 

          is a Cauchy sequence in  . 

Since   is complete there exists     such that        . 

Now,        for some  . 

Since     is open we can find     such that            ------>(1) 

We have         and        
 

      . 

Hence we can find a positive integer    such that            
 

 
  and  

    
 

 
   for all     . 

Now, fix     . 

We claim that                      . 

Let                  

                   
 

 
 , since     . 

Now,                              

                          
 

 
   

 

 
     . 

          . 

                            , by (1)   

Thus              is covered by the single set      which is a 

contradiction since             cannot be covered by a finite number 

of    ’s. 

Hence   is compact.  

Theorem    with usual metric is complete. 

Proof.   Let      be a Cauchy sequence in  . 

Then      is a bounded sequence and hence is contained in a closed 

interval      . 
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Now,       is compact and hence is complete. 

Hence      converges to some point        . 

Thus every Cauchy sequence       in    converges to some point x in 

  and hence   is complete. 

Solved Problems: 

1. Give an example of a closed and bounded subset of    which is 

not compact. 

Solution:  Consider              . 

Consider the closed ball      1 . 

Clearly,     1  is bounded. 

Also,      1   is a closed set. 

We claim that     1   is not compact. 

Consider     1       ;       1                     1     . 

Now,          1  and hence        1  for all  n. 

Thus      is a sequence in      1 . 

Also           2 if     . 

Hence the sequence      does not contain a Cauchy subsequence. 

      1  is not totally bounded. 

     1  is not compact. 

Problem 2: 

Prove that any totally bounded metric space is separable. 

Solution: Let    be a totally bounded metric space. 

For each natural number n let        
    

      
  be a subset of 

  such that        
 

 
    

   . ------------------>(1) 

Let       
 
   . 

Since each    is finite,   is a countable subset of   . 

We claim that   is dense in  . 

Let        be any open ball. 

Choose a natural number   such that 1    . 

Now,          
  

 

 
  for some i, by (1) 

       
    1

     . 
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            . 

Thus every open ball in   has non-empty intersection with  . 

Hence   is dense in  . 

Thus   is a countable dense subset of  . 

Hence   is separable. 

Problem 3. Prove that any bounded sequence in   has a convergent 

subsequence. 

Solution.   Let       be a bounded sequence in  . 

Then there exists a closed interval       such that            for all 

n. 

Thus      is a sequence in the compact metric space      . 

Hence  by the above theorem,      has a convergent sub-sequence. 

 Problem 4.  Prove that the closure of a totally bounded set is totally 

bounded. 

Solution. Let   be a totally bounded subset of a metric space  . 

We claim that    is a totally bounded. 

We shall show that every sequence in    contains a Cauchy 

subsequence. 

Let        be a sequence in   . 

Let     be given. 

Then  since        ,       
 

 
       . 

Choose           
 

 
     . 

              
 

 
        .---------------->(1) 

Now,      is a sequence in  . Since   is totally bounded       

contains a Cauchy sequence say     
 . 

Hence there exists a natural number   such that  

              
    

  
 

 
     for all            --------->(2) 
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   for all           , by (1)and (2) 

Hence      
  is a Cauchy subsequence of       . 

        is totally bounded. 

Problem 5.  Let   be a totally bounded subset of  . Prove that     is 

compact. 

Solution.    Since   is totally bounded,      is also totally bounded. 

Also, since     is a closed subset of   and   is complete     is complete. 

Hence     is totally bounded and complete. 

       is compact. 

Theorem   Let   be a continuous mapping from a compact metric 

space    to any metric space   . Then       is compact. 

Proof.  Without loss of generality we assume that          . 

Let      be a family of open sets in    such that         . 

            . 

              . 

              .  

Also since   is continuous          is open in     for each  . 

           is an open cover for   . 

Since    is compact this open cover has a finite subcover, say, 

       
 ,        

     .         
 . 

          
         

           
      . 

           

 
         . 

       

 
                . 

      
    

      
 is a cover for   . 

 

Compactness 

 

NOTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-Instructional material 

 



  

Thus the given open cover      for     has a finite subcover. 

     is compact. 

Corollary 1.  Let   be a continuous map from a compact metric space  

   into any metric   . Then       is closed and bounded. 

Proof.        is compact and hence is closed and bounded. 

Corollary 2.   Any continuous real valued function  defined on a 

compact metric space is bounded and attains its bounds. 

Proof.  Let   be a compact metric space. 

Let       be a continuous real valued function. 

Then      is a compact subset of  . 

        is a closed and bounded subset of  . 

Since       is bounded   is a bounded function. 

Now, let    .   .   .            and     .   .   .          . 

By definition of l. u. b and g. l. b                    

But      is closed . Hence                  . 

            . 

  There exists         such that        and        . 

Hence   attains its bounds. 

Note. 

1. Corollary (2) is not true if   is not compact. 

2. The function      1    defined by      1   is 

continuous but not bounded. 

3. The function      1    defined by        is bounded 

having  .  .  .  1  and  .  .  .   . However this function never 

attains these bounds at any point in    1 . 

 

Theorem  Any continuous mapping   defined on a compact metric 

space          into any other metric space          is uniformly  

continuous on   . 

Proof.  Let     be given. Let        . 

Since   is continuous at   there exists      such that  
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                                             1 2   ---------->(1) 

Now, the family of open balls      
 

 
          is an open cover 

for   . 

Since     is compact this open cover has a finite sub cover say 

        
 

 
   

          
 

 
   

  . 

Let   min  
 

 
   

  . 
 

 
   

 . 

We claim  that                                  . 

Let          
 

 
   

   for some   where 1     . 

            
1

2
   

  

                   1 2   , by (1)  -------------->(2) 

Now,                                

                               
 

 
   

   

                                     
 

 
   

  
 

 
   

      
. 

Thus                  
. 

                   1 2   , by (1)  ------------>(3) 

Now,                                                    

                                          1
2    1 2       . ( by (2) and (3)) 

Thus                                  . 

This proves that    is uniformly continuous on   . 

Note.  The above theorem is not true if     is not compact. 

We have seen that if   is a continuous bijection then     need not be 

continuous. Now we shall prove that if   is a continuous bijection 

defined on a compact metric space, then     is also continuous. 
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Theorem  Let   be a 1  1 continuous function from a compact 

metric space    onto any metric space   . Then      is continuous 

on   . Hence   is a homeomorphism from    onto   . 

Proof.  We shall show that      is continuous by proving that   is a 

closed set in   . 

                   is a closed set in   . 

Let   be a closed set in   . 

Since    is compact   is compact. 

Since   is continuous      is a compact subset of    . 

        is a closed subset of   . 

       is continuous on   . 

Solved Problems.  

1. Prove that the range of a continuous real valued function   on 

a compact connected metric space   must be either a single 

point or a closed and bounded  interval. 

 Solution.  Let       be a continuous function. 

Case(i).  Suppose   is a constant function. 

                Then the range of   is a single point. 

Case(ii).  Suppose   is not a constant function. 

                Then the range of   contains more than one point. 

                since   is connected      is a connected subset of  .  

                       is an interval in  . 

      Also, since   is compact and   is continuous      is a compact 

subset of  . 

        is a closed and bounded subset of  . 

Thus      is a closed and bounded interval of  . 

Problem 2.  Prove that any continuous function           is not 

onto. 

Solution.  Suppose   is onto. Then           . 
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Now, since       is compact and   is continuous,            is 

compact which is a contradiction. 

    is not onto.  

Check your progress 
1. Define open cover. 
2. Define subcover. 
3. Define compact metric space. 
4. State Heine Borel theorem. 

 

13.4 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let   be a metric space. A family of open sets      in   is 

called an open cover for   if      . 

2. A subfamily of       which itself is an open cover is called a 

subcover. 

3. A metric space   is said to be compact if every open cover for 

  has finite subcover. 

4. Any closed interval       is a compact subset of  . 

13.5 SUMMARY 
 Let   be a metric space. A family of open sets      in   is 

called an open cover for   if      . 

 A subfamily of       which itself is an open cover is called a 

subcover. 

 A metric space   is said to be compact if every open cover for 

  has finite subcover. 

   with usual metric is not compact. 

    1  with usual metric is not compact. 

        with usual metric is not compact. 

 Let   be an infinite set with discrete metric. Then   is not 

compact. 

 Closed interval       with usual metric is compact. 

 Let   be a metric space. Let    .   is compact iff  given a 

family of open sets      in   such that       there exists a 

subfamily     
    

      
   such that     

 
     . 

 Any compact subset   of a metric space   is bounded. 

 Any compact subset   of a metric space      is closed. 

 A closed subspace of a compact metric space is compact. 

 Heine Borel Theorem: Any closed interval       is a compact 

subset of  . 
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 A subset   of   is compact iff   is closed and bounded. 

 A family   of subsets  of a set    is said to have the finite 

intersection property if any finite members of   have non-

empty intersection. 

 A metric space   is compact  iff any family of closed sets with 

finite intersection property has non-empty intersection. 

 A metric space   is said to be totally bounded if for every 

    there exists a finite number of elements              

  

such that                  .          . 

 Any compact metric space is totally bounded. 

 Let    be a subset of a metric space  . If   is totally bounded 

then   is bounded. 

 Let      be sequence in a metric space  . Let         

      be an increasing sequence of positive integers. Then 

    
   is called a subsequence of (  ). 

 A metric space       is totally bounded iff every sequence in 

  has a Cauchy subsequence. 

 A metric space   is said to be sequentially compact if every 

sequence in   has a convergent sun-sequence. 

13.6 KEYWORDS 
 Open cover: Let   be a metric space. A family of open sets      

in   is called an open cover for   if      . 

 Subcover: A subfamily of       which itself is an open cover is 

called a subcover. 

 Compact metric space: A metric space   is said to be compact if 

every open cover for   has finite subcover. 

 Heine Borel Theorem: Any closed interval       is a compact 

subset of  . 

 Sequentially compact: A metric space   is said to be 

sequentially compact if every sequence in   has a convergent 

sun-sequence. 

13.7 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1. If   and   are two compact subsets of a metric space  . Prove 

that     is also compact. 

2. Let   be  a complete metric space. Prove that a closed subset 

  of   is compact if and only if    is totally bounded. 

3. Prove that any Cauchy sequence in a metric space is totally 

bounded. 
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4. Prove that any continuous function from a compact metric 

space to any other metric space is a closed map. 

5. Any sequence in a compact metric space has a convergent 

subsequence. 

6. Any continuous function defined on a closed interval       is 

uniformly continuous. 
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UNIT-14    
SEQUENCE OF FUNCTION 
AND SERIES OF FUNCTIONS    

Structure 

14.0 Introduction  

14.1 Objectives  

14.2 Pointwise convergence of sequence of functions 

14.2.1 Definition 

 14.3  Uniform Convergence of Sequence of functions 

  14.3.1 Cauchy Criterion for Uniform Convergence 

14.4  Answers to Check Your Progress Questions 

14.5  Summary 

14.6  Keywords 

14.7  Self Assessment Questions and Exercises 

            14.8  Further Readings    

14.0 INTRODUCTION 

In this chapter we discussed convergence of sequence and 

series of real numbers. In this chapter we discuss the convergence of 

sequence and series of functions. We deal almost exclusively with 

real-valued functions. 

14.1  OBJECTIVES 

After going through this unit, you will be able to: 

  Understand what is meant by Pointwise convergence of 

sequence of functions 

  Discuss Uniform Convergence of Sequence of functions 

 Discuss Cauchy Criterion for Uniform Convergence 

14.2 POINTWISE CONVERGENCE OF 

SEQUENCE OF FUNCTIONS 

14.2.1   Definitions 

Definition 1. Let        
  be a sequence of real-valued functions on a 

set  . We say that        
  converge to the function   on   if 
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                     lim                        (          .. 1  

If  (1) holds we sometimes say that        
  converge           to   

on  . For if (1) holds, then, for every         of  , the sequence 

           
  of real numbers converges to     . Here are several  

examples.  

If 

                                 (    1), 

 then       
  converges to   on    1  where 

                           1                  

                                        1  1. 

For a second example let 

                                          
 

    
                              . 

If    , then         
 

  
 1  . Hence 

                           lim                            . 

Also, since         for each    , it is clear that           
   

converge to   (the function identically 0) on      . 

                                       
  

                                     . 

Then if     we have 

      
1   

 
1

      1
 

And hence lim          . Since         for each     we see 

that           
 . 

 For a fourth example let    denote the characteristic function 

of       . For any      we have                       

  1 provided      . (For then         ). Hence 

                              lim         1           (    ), 
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And so        
  converges to 1 on       . 

Definition 2. According to definition 1, the sequence of functions 

          
  converges to   on the set   if, for each    , given     

there exists     such that 

                                             (    .              1    

In general, the number   depends on both   and  . It is not always 

possible to find an   such that (1) holds for all   in   simultaniously. 

 For example, if          (    1), then, as we have seen, 

          
  converges to   on    1  where              1  and 

  1  1. With   
 

 
, then, for each    , there exists     such 

that 

               
 

 
           (    .           2   

If     or   1, then (2) is true for   1. However, if   
 

 
 

 .  , then the smallest value of   for which (2) is true is    . For, 

if   
 

 
, then        

 

 
 

 

 while       . Thus,              

 
 

 
 

 

, and  
 

 
 

 

 
 

 
 if and only if    .   

Similarly, if    .  then the smallest value of   for which (2) is true 

is    . 

 Indeed, there is no     such that (2) holds simultaneously 

for all      1 .  

For, if such an   existed, we would have 

   
1

2
                

For all   in    1 . This implies    
 

 
         1 . Letting   1  

we obtain the contradiction 1  
 

 
. 

 For the second example,  the story is different. For, if 

                                            
 

    
                 , 

Then        1       1      . Hence, for any     the 

statement 

                                                               .    
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Is true for all   in       simultaneously, provided only that   1   . 

(For in this case           
 

 
 

 

 
   for all   in      .) Thus for 

this sequence           
  an     can be found such that (3) holds 

for all    . This   depends only on   and not on  . 

Now consider 

      
  

      
                   . 

We have seen that           
  converges to 0 on       . Given 

   , we know therefore that for each          there exists 

    such that 

                                                      .             .    

However, note that    
 

 
  

 

 
. Hence, if   

 

 
, there is no single 

    such that (4) holds simultaneously for all         . For if 

such an   existed we would have 

                                       
 

 
               . 

But if   1   this a contradiction. 

 We leave it to the reader to show that if   1 then there is no 

    such that the statement  

       1                

Holds for all real   simultaneously, where    is as in the fourth 

example. 

14.3    UNIFORM CONVERGENCE OF  

SEQUENCE OF FUNCTIONS 
We have agreed to say that           

  converges (pointwise) to   on 

  if, each    , given     there exists     such that 

                                         .              .. 1  

We have seen several examples in which in which it is impossible to 

find an   such that (1) holds for all     simultaneously. 

 If for each     it is possible to find an   such that (1)  holds 

for all     then we say that           
  converges uniformly to   on 

 . 
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Definition 3. Let           
  be a sequence of real-valued function on 

a set  . We say that           
  converges uniformly to the function   

on   if given     there exists     such that 

                                                                  . 

 The wording of this definition implies that   depends on   

but not on  . It is clear that if           
  converges uniformly to   on 

 , then           
  converges poitwise to  on  . 

 Thus, if       
 

      
            , then our work in 

previous section shows that           
  converges uniformly to   on 

     . For we have already shown that given     there exists 

    such that 

 

                                         . 

(Any   such that   1   will do). 

 It is not too easy to state what it means for the sequence 

       
  not to converge uniformly to   on  . We shall now do this. 

Corollary 1. The sequence        
  does not converge uniformly to   

on   if and only if  there exists some     such that there is no     

for which the statement  

                                  

holds. 

 The reader should not proceed until he is convinced that this 

section is equivalent to the previous section. 

 If                   1  and               1 , 

  1  1, then we have seen that        
  converges pointwise to   

on    1 . However,        
  dose not converge uniformly to   on    1 . 

For, as we saw in Definition 2, if   
 

 
 then there is no     such 

that 

                                1 . 

If   is an interval of real numbers then it is readily seen that saying 

       
  converges uniformly to   on   means that given     there 

exists     such that the vertical distance from any point on the 

graph of   to the corresponding point on the graph  of any of the 

functions           is less than  . Thus, if        
  converges 
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uniformly to   on  , then the graphs of            are all “uniformly 

close” to the graph of  . 

 In particularly, if         
  converges to zero uniformly on  , 

then given     there exists     such that the graphs of            

are all within vertical distance   of the       . 

 Here is still another way to view uniform convergence. 

Definition 4. If        
  converges uniformly to  on  , then given 

    there exists   such that 

                           . 

This implies 

                       
 . . . . 

Hence, if        
  converges uniformly to zero on  , then 

                                             lim            .   
 . . .         1  

Conversely, it not difficult to show that if (1) holds then        
  

converges uniformly to 0 on  . 

 This readily proves that the sequence        
  of section 14.1 

does not converge uniformly to zero on       . For 

             
 . . .      

1

 
   

1

2
                     1 2     

and hence              
 . . .  cannot approach zero as    . 

Definition 5. From Definition 3 it follows immediately that        
  

converges uniformly to   on   if and only if          
  converges 

uniformly to 0 on  . From Definition 4 we then have 

Theorem 1. The sequence of function        
  converges uniformly to 

  on   if and only if 

                                              
 . . .     as       . 

14.3.1 Cauchy Criterion for Uniform Convergence 

In this subsection, the Cauchy criterion for uniform 

convergence. It is analogues to the result that a sequence of real 

numbers is convergent If and only if it is Cauchy. 
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Theorem 2. Let        
  be a sequence of real-valued functions on a 

set  . Then        
  is uniformly convergent on   (to some function 

 ) if and only if given     there exists     such that  

                                              .         1  

Proof.  Suppose first that        
  is a uniformly convergent sequence 

of functions on  , converging to   on  . Then, given    , there 

exists     such that 

             
 

2
                . 

Thus, if       we have, for any    , 

                                        

           
 

 
 

 

 
  

and hence (1) holds for this  . 

 Conversely let        
  be any sequence of functions on   such 

that, given    , there exists     such that (1) holds. We must 

show that there is a function   on   such that        
  converges 

uniformly to   on  . From (1) we see that, for each fixed    , the 

sequence of real numbers           
  is a Cauchy sequence. Hence 

          exists for each    . Define   by 

     lim
   

                     . 

Keeping   fixed in (1) and letting     we obtain 

                               . 

Since   was arbitrary, this shows that        
  converges uniformly 

to   on  , and the proof is complete. 

 The ne t results  called Dini’s theorem  shows that under a 

very special set of circumstances a sequence of            functions 

must converge uniformly. 

Theorem 3. Let        
  be a sequence of continuous real-valued 

functions on the         metric space       such that 

                                        .           1  

If        
  converges (         ) on   to the continuous function  , 

then        
  converges           to   on  . 
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Proof. For each     let        . Then from (1) we have 

                                    .           2  

Also, since        
  converges to   on   we have 

                        lim                            .         .....    

We must show that        
  converges uniformly to 0 on  . 

 Fix    . If    , then (3) assures us of the existence of 

       such that  

         
 

2
. 

Since       is continuous at  , there is an open ball    about   such 

that 

                                      . 

The    for all     from an open covering of  . Since this a finite 

number of the   —say 

   
    

      
 

also cover  . Let   ma                . Now if   is any point in 

 , then      
 for some   1    . Hence 

      
     . 

But since        , (2) implies 

            
   . 

Hence 

          

For all    . But then (2) shows that 

                                          

And so        
  converges uniformly to 0 on  . This completes the 

proof. 

It is clear that Theorem 3 remains true if the inequality signs in (1) 

are all reversed. For then we could set         and proceed as 

above. 
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Check your progress 
1. Define converge          . 
2. Define convergent sequence of functions. 

 

14.4 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS 

1. Let        
  be a sequence of real-valued functions on a set 

 . We say that        
  converge to the function   on   if 

                     lim                        (   ) 

If  (1) holds we sometimes say that        
  converge 

          to   on  . For if (1) holds, then, for every 

        of  , the sequence 

           
  of real numbers converges to     . 

2. The sequence of functions           
  converges to   on 

the set   if, for each    , given     there exists     

such that 

                                             (   ).       

In general, the number   depends on both   and  . 

14.5 SUMMARY 
 The sequence of function        

  converges uniformly to   on 

  if and only if 

                                          
 . . .     as       . 

 Let        
  be a sequence of real-valued functions on a set  . 

We say that        
  converge to the function   on   if 

                     lim                        (   ) 

If  (1) holds we sometimes say that        
  converge 

          to   on  . For if (1) holds, then, for every 

        of  , the sequence 

 The sequence of functions           
  converges to   on the set 

  if, for each    , given     there exists     such that 

                                             (   ).       

In general, the number   depends on both   and  . 
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 Let        
  be a sequence of real-valued functions on a set  . 

Then        
  is uniformly convergent on   (to some function  ) if 

and only if given     there exists     such that  

                                       . 

 Let        
  be a sequence of continuous real-valued functions 

on the         metric space       such that 

                                        .     

14.6 KEYWORDS 
Converges uniformly: Let           

  be a sequence of real-valued 

function on a set  . We say that           
  converges uniformly to 

the function   on   if given     there exists     such that 

                                                                  . 

14.7 SELF ASSESSMENT QUESTIONS AND 
EXERCISES 

1) If         
  and        

  converges uniformly on E, prove that 

          
  converges  uniformly on  . 

2) Let   be a dense subset of the metric space  . If        
  is a 

sequence of continuous functions on  , and if        
  converges 

uniformly on  , prove that        
  converges uniformly on  . 

3) The uniform limit of a sequence of discontinuous functions 

can be continuous. 

4) If        
  is a sequence of functions which converges 

uniformly to the continuous function   on       , prove that  

lim        
 

 
                     . 

5) If        and each    and   are continuous then the 

convergence is uniform. 
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